Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 579-590.doi: 10.3864/j.issn.0578-1752.2019.04.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genome-Wide Detection of Selection Signal in Temperate and Tropical Maize Populations with Use of FST and XP-EHH

YANG YuXin,ZOU Cheng()   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-10-30 Accepted:2018-12-09 Online:2019-02-16 Published:2019-02-27
  • Contact: Cheng ZOU E-mail:zoucheng@caas.cn

Abstract:

【Objective】 Maize was first domesticated in tropical areas, but it has been cultivated widely in the temperate regions after natural and artificial selection. Flowering time is not only the key component of the entire growth period, but also a major adaptive trait during the dispersal process from tropical to temperate conditions. Thus, identifying the selected gene regions responsible for the adaptation to temperate zones, and discovering the genes that are involved in flowering time could provide a molecular basis for improving maize and for dissecting its flowering mechanism. 【Method】 We analyzed the haplotype data of 30 temperate and 21 tropical maize inbred lines. High quality SNP (single nucleotide polymorphism) markers were obtained after filtering out SNPs with high missing rates and low allele frequencies. These high quality SNPs were annotated by SNPeff. Principle component analysis (PCA) of the genotypic data of temperate and tropical maize was performed to further validate the population structure of these samples. Using high quality SNP markers that were present in tropical and temperate populations, we calculated the selection signal using the fixation index (FST) and cross population extended haplotype homozygosity (XP-EHH) methods. The top 1% of values was used as a significant threshold to identify the candidate selected signals. The candidate selected genes that we selected from temperate and tropical maize were identified based on their SNP annotation. The function of these selected genes was characterized furtherly by the GO enrichment analysis using agriGO. To identify the genes for flowering time that were under selection, bioinformatics databases were examined that contained relevant data on maize. 【Result】 By analyzing the high depth resequencing data, we found 14123408 and 8791673 SNPs in tropical and temperate populations, respectively. The identified SNPs were mainly distributed in the intergenic regions. There were 204752 high quality SNPs that coexisted in temperate and tropical populations. PCA indicated that temperate and tropical maize can be divided into two groups. The top 1% of FST value and XP-EHH were 0.3059, 3.2681, and a total of 557 and 1 913 candidate genes were identified by FST and XP-EHH methods, respectively. Many candidate genes were highly related to regulation of flowering time, which included ZmCCT9, COL1 and GRMZM2G387528. ZmCCT9 is a vital gene for regulating flowering time, and it negatively regulated the floral activator gene ZCN8, which cause the late flowering time phenotype under long-day conditions. COL1 positively interacts with the FT protein to promote the transition of flowering time to adapt to the long-day environment. Functional annotations of GRMZM2G387528 revealed that it was a phytochrome interacting factor, and interacts with photoperiod gene ZmphyB1. 【Conclusion】 Our study revealed that tropical maize had higher genetic diversity than temperate maize. A series of genes that were under selection during the adaptation to tropical to temperate conditions were predicted, and we further explored the genes that were involved in flowering during this process.

Key words: maize, selection signal, fixation index, cross population extended haplotype homozygosity, flowering time genes

Fig. 1

The SNP distribution in the temperate and tropical maize genome a: Represents the SNP distribution in temperate chromosomes; b: Represents the SNP distribution in tropical chromosomes. The abscissa represents the physical position of chromosome, and window size is 1 Mb. The darkgreen represents the SNP-poor regions, and red color indicates SNP-rich regions"

Table 1

The distribution proportions of SNP found in genomic regions between temperate and tropical maize"

类型
Type
温带 Temperate 热带 Tropical
数目 Count 百分比 Percent (%) 数目 Count 百分比 Percent (%)
Downstream 2722265 18.14 4507749 18.54
Exon 326417 2.18 463543 1.91
Intergenic 7686519 51.22 12389340 50.97
Intron 1257112 8.38 2046559 8.42
Splice_Site_Acceptor 647 0.00 1005 0.00
Splice_Site_Donor 602 0.00 977 0.00
Spice_Site_Region 28482 0.19 45454 0.19
Upstream 2667996 17.78 4376510 18.00
UTR_3_Prime 192736 1.28 297085 1.22
UTR_5_Prime 124412 0.83 180849 0.74

Fig. 2

The phenotype of the temperate (a) and tropical (b) maize inbred line"

Fig. 3

The principle component analysis of temperate and tropical maize"

Fig. 4

Genome-wide FST values between temperate and tropical maize populations The cutoff line represent top 1% of FST"

Fig. 5

Genome-wide distribution of XP-EHH signatures between temperate and tropical maize The cutoff lines represent the top 1% of the XP-EHH selection signal"

Table 2

The results of GO enrichment analysis using the genes, which obtained from the FST selection signatures"

GO条目
GO term
通路
Ontology
描述
Description
P
P-value
错误发现率
FDR
GO:0008064 P 肌动蛋白聚合或解聚的调节
Regulation of actin polymerization or depolymerization
1.30E-06 0.00011
GO:0032271 P 蛋白质聚合的调节Regulation of protein polymerization 1.30E-06 0.00011
GO:0030832 P 微丝长度的调节Regulation of actin filament length 1.30E-06 0.00011
GO:0030833 P 微丝聚合反应的调节Regulation of actin filament polymerization 1.30E-06 0.00011
GO:0032970 P 肌动蛋白丝的调控过程Regulation of actin filament-based process 1.30E-06 0.00011
GO:0044087 P 细胞组分生物合成的调节Regulation of cellular component biogenesis 1.30E-06 0.00011
GO:0030041 P 肌动蛋白丝的聚合Actin filament polymerization 2.20E-06 0.00014
GO:0008154 P 激动蛋白丝的聚合或者解聚Actin polymerization or depolymerization 2.20E-06 0.00014
GO:0007015 P 肌动蛋白丝组织Actin filament organization 2.20E-06 0.00014
GO:0032535 P 细胞组分大小的调节Regulation of cellular component size 3.10E-06 0.00016
GO:0090066 P 解剖学结构大小的调节Regulation of anatomical structure size 3.10E-06 0.00016
GO:0033043 P 细胞器组织的调节Regulation of organelle organization 4.20E-06 0.00021
GO:0051128 P 细胞成分组织的调节Regulation of cellular component organization 1.20E-05 0.00057
GO:0030036 P 肌动蛋白细胞骨架组织Actin cytoskeleton organization 0.00071 0.029
GO:0030029 P 肌动蛋白丝基过程Actin filament-based process 0.00071 0.029
GO:0006996 P 细胞器组织Organelle organization 0.0012 0.046

Table 3

The function annotation of candidate genes which obtained from the selection signatures"

基因
Gene
染色体
Chromosome
物理位置
Position (Mb)
FSTa
FST value
XP-EHH值b
XP-EHH value
注释c
Annotation
GRMZM2G366434d 5 17.336—17.338 0.3688** 4.6263** AP2-ErEBP转录因子206,ereb206
AP2-EREBP-transcription factor 206, ereb206
GRMZM2G145579d 4 47.618—47.620 0.5071** 3.8724* bHLH转录因子165,bhlh165
bHLH-transcription factor 165, bhlh165
GRMZM2G023325 1 66.506—66.507 0.7845** 氧氮杂萘酮合成12,bx12
Benzoxazinone synthesis12,bx12
GRMZM2G074094 1 199.519—199.525 0.4380** SET结构域,sdg103
SET domain group 103, sdg103
GRMZM2G092091 1 220.057—220.061 0.4136** bHLH转录因子27,bhlh27
bHLH-transcription factor 27,bhlh27
GRMZM2G478417 1 272.109—272.113 0.3706** bZIP转录因子49,bzip49
bZIP-transcription factor 49,bzip49
GRMZM2G174834 4 159.692—159.694 0.3952** WRI1转录因子,wri2
WRI1 transcription factor2, wri2
GRMZM2G126505 4 185.907—185.912 0.3879** 脱落酸8'-羟化酶2,abh12
Abscisic acid 8'-hydroxylase2, abh12
GRMZM2G070523 5 20.219—20.221 0.3693** MYB转录因子129,myb129
MYB-transcription factor 129, myb129
GRMZM2G004334 6 109.244—109.247 0.5006** 同源框转录因子10,hb10
Homeobox-transcription factor 10, hb10
GRMZM2G170148 9 110.859—110.870 0.3954** MYB相关转录因子86,mybr86
MYB-related-transcription factor 86, mybr86
GRMZM2G156013 10 141.014—141.018 0.4835** 丝氨酸-苏氨酸激酶4,stk4
Serine-threonine kinase4, stk4
GRMZM2G143602 2 8.289—8.295 4.1470* CK2蛋白激酶α1,cka1
CK2 protein kinase alpha 1, cka1
GRMZM2G001289 2 15.033—15.035 3.7898* 同源框转录因子75,hb75
Homeobox-transcription factor 75, hb75
GRMZM2G102059 2 236.711—236.716 3.6779* ABI3-VP1转录因子12,abi12
ABI3-VP1-transcription factor 12, abi12
GRMZM2G089638 3 1.464—1.469 4.1762* TCP转录因子31,tcptf31
TCP-transcription factor 31, tcptf31
GRMZM2G087804 3 140.859—140.861 3.9809* 金色植物2,g2
Golden plant2, g2
GRMZM2G015875 4 47.618—47.620 4.5721* NMCP/CRWN同源因子1,nch1
NMCP/CRWN-Homologous1, nch1
GRMZM2G145579 4 161.101—161.108 3.8724* bHLH转录因子165,bhlh165
bHLH-transcription factor 165, bhlh165
GRMZM5G880069 5 184.337—184.342 3.8136* WRKY转录因子109,wrky109
WRKY-transcription factor 109, wrky109
GRMZM2G129783 6 106.637—106.640 3.7924* 五肽重复蛋白346,ppr346
Pentatricopeptide repeat protein346, ppr346
GRMZM2G387528 8 0.935—0.938 4.2271* 光敏色素作用因子3,pif3
Phytochrome interacting factor3, pif3
GRMZM2G028054 8 170.725—170.728 3.7593* MYB转录因子74,myb74
MYB-transcription factor 74, myb74
GRMZM2G009808 9 107.641—107.645 5.3817** 乌头酸梅3,aco30
Aconitase3, aco30
GRMZM2G139082 9 116.292—116.294 4.3570* 热冲击互补因子1,hscf1
Heat shock complementing factor1, hscf1
GRMZM2G013671 9 152.030—152.038 3.7187* β扩增蛋白5
Beta expansin5, expb5
GRMZM2G474769 10 78.160—78.161 4.8528** 下胚轴伸长蛋白1,lhy1
Late hypocotyl elongation protein ortholog1, lhy1
GRMZM2G180168 10 78.333—78.337 4.6254** ABI3-VP1转录因子23,abi23
ABI3-VP1-transcription factor 23, abi23
[1] PIPERNO D R, RANERE A J, HOLST I, IRIARTE J, DICKAU R . Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(13):5019-5024.
doi: 10.1073/pnas.0812525106 pmid: 19307570
[2] MATSUOKA Y, VIGOUROUX Y, GOODMAN M M, SANCHEZ J, BUCKLER E, DOEBLEY J . A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(9):6080-6084.
doi: 10.1073/pnas.052125199 pmid: 11983901
[3] VAN HEERWAARDEN J, DOEBLEY J, BRIGGS W H, GLAUBITZ J C, GOODMAN M M, GONZALEZ J D J S, ROSS-IBARRA J . Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(3):1088-1092.
doi: 10.1073/pnas.1013011108 pmid: 21189301
[4] BUCKLER E S, HOLLAND J B, BRADBURY P J, ACHARYA C B, BROWN P J, BROWNE C, ERSOZ E, FLINT-GARCIA S, GARCIA A, GLAUBITZ J C , et at. The genetic architecture of maize flowering time. Science, 2009,325(5941):714-718.
doi: 10.1126/science.1174276
[5] SWARTS K, GUTAKER R M, BENZ B, BLAKE M, BUKOWSKI R, HOLLAND J, KRUSE-PEEPLES M, LEPAK N, PRIM L, ROMAY M C , et at. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017,357(6350):512-515.
doi: 10.1126/science.aam9425 pmid: 28774930
[6] LU Y L, YAN J B, GUIMARAES C T, TABA S, HAO Z F, GAO S B, CHEN S J, LI J S, ZHANG S H, VIVEK B S , et at. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics, 2009,120(1):93-115.
doi: 10.1007/s00122-009-1162-7 pmid: 19823800
[7] TALLURY S, GOODMAN M . Experimental evaluation of the potential of tropical germplasm for temperate maize improvement. Theoretical and Applied Genetics, 1999,98(1):54-61.
doi: 10.1007/s001220051039
[8] HALLAUER A R, CARENA M J . Adaptation of tropical maize germplasm to temperate environments. Euphytica, 2013,196(1):1-11.
doi: 10.1007/s10681-013-1017-9
[9] KIMURA M . Evolutionary rate at the molecular level. Nature, 1968,217(5129):624-626.
doi: 10.1038/217624a0
[10] SMITH J M, HAIGH J . The hitch-hiking effect of a favourable gene. Genetics Research, 1974,23(1):23-35.
doi: 10.1017/S0016672300014634 pmid: 4407212
[11] TAJIMA F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989,123(3):585-595.
doi: 10.1101/gad.3.11.1801 pmid: 2513255
[12] NIELSEN R, WILLIAMSON S, KIM Y, HUBISZ M J, CLARK A G, BUSTAMANTE C . Genomic scans for selective sweeps using SNP data. Genome Research, 2005,15(11):1566-1575.
doi: 10.1101/gr.4252305 pmid: 16251466
[13] SABETI P C, REICH D E, HIGGINS J M, LEVINE H Z, RICHTER D J, SCHAFFNER S F, GABRIEL S B, PLATKO J V, PATTERSON N J, MCDONALD G J , et at. Detecting recent positive selection in the human genome from haplotype structure. Nature, 2002,419(6909):832.
doi: 10.1038/nature01140 pmid: 12397357
[14] VOIGHT B F, KUDARAVALLI S, WEN X Q, PRITCHARD J K . A map of recent positive selection in the human genome. PLoS Biology, 2006,4(3):e72.
doi: 10.1371/journal.pbio.0040072 pmid: 1892825
[15] SABETI P C, VARILLY P, FRY B, LOHMUELLER J, HOSTETTER E, COTSAPAS C, XIE X, BYRNE E H, MCCARROLL S A , et at. Genome-wide detection and characterization of positive selection in human populations. Nature, 2007,449(7164):913.
doi: 10.1038/nature06250
[16] WRIGHT S . The genetical structure of populations. Annals of Eugenics, 1949,15(1):323-354.
doi: 10.1007/978-3-642-88415-3
[17] WEIR B S, COCKERHAM C C . Estimating F-statistics for the analysis of population structure. Evolution, 1984,38(6):1358-1370.
doi: 10.1111/j.1558-5646.1984.tb05657.x pmid: 28563791
[18] GIANOLA D, SIMIANER H, QANBARI S . A two-step method for detecting selection signatures using genetic markers. Genetics Research, 2010,92(2):141-155.
doi: 10.1017/S0016672310000121 pmid: 20515517
[19] AXELSSON E, RATNAKUMAR A, ARENDT M L, MAQBOOL K, WEBSTER M T, Perloski M, Liberg O, ARNEMO J M, HEDHAMMAR A, LINDBLAD-TOH K . The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 2013,495(7441):360.
doi: 10.1038/nature11837
[20] LIU K J, GOODMAN M, MUSE S, SMITH J S, BUCKLER E, DOEBLEY J . Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003,165(4):2117-2128.
doi: 10.1017/S001667230006426 pmid: 14704191
[21] HE C, FU J J, ZHANG J, Li Y X, ZHENG J, ZHANG H W, YANG X H, WANG J H, WANG G Y . A gene-oriented haplotype comparison reveals recently selected genomic regions in temperate and tropical maize germplasm. PLoS ONE, 2017,12(1):e0169806.
doi: 10.1371/journal.pone.0169806 pmid: 5242465
[22] SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, ZHANG J W, FULTON L, GRAVES T A , et at. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009,326(5956):1112-1115.
doi: 10.1126/science.1178534
[23] JIAO Y P, PELUSO P, SHI J H, LIANG T, STITZER M C, WANG B, CAMPBELL M S, STEIN J C, WEI X H, CHIN C S , et at. Improved maize reference genome with single-molecule technologies. Nature, 2017,546(7659):524.
doi: 10.1038/nature22971 pmid: 28605751
[24] CHIA J M, SONG C, BRADBURY P J, COSTICH D, DE LEON N, DOEBLEY J, ELSHIRE R J, GAUT B, GELLER L, GLAUBITZ J C , et at. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012,44(7):803.
doi: 10.1038/ng.2313
[25] BUKOWSKI R, GUO X S, LU Y L, ZOU C, HE B, RONG Z Q, WANG B, XU D W, YANG B C, XIE C X , et at. Construction of the third-generation Zea mays haplotype map. GigaScience, 2017, 7(4): gix134.
doi: 10.1093/gigascience/gix134 pmid: 29300887
[26] DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T , et at. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011,27(15):2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[27] CINGOLANI P, PLATTS A, WANG L L, COON M, NGUYEN T, WANG L A, LAND S J, LU X Y, RUDEN D M . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012,6(2):80-92.
doi: 10.4161/fly.19695
[28] MA Y, DING X, QANBARI S, WEIGEND S, ZHANG Q, SIMIANER H . Properties of different selection signature statistics and a new strategy for combining them. Heredity, 2015,115(5):426.
doi: 10.1038/hdy.2015.42 pmid: 4611237
[29] HOAGLIN D C, MOSTELLER F, TUKEY J W . Understanding Robust and Exploratory Data Analysis. New York: John Wiley & Sons, 1983.
[30] SZPIECH Z A, HERNANDEZ R D . selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution, 2014,31(10):2824-2827.
doi: 10.1093/molbev/msu211 pmid: 4166924
[31] QUINLAN A R, HALL I M . BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 2010,26(6):841-842.
doi: 10.1093/bioinformatics/btq033 pmid: 20110278
[32] TIAN T, LIU Y, YAN H Y, YOU Q, YI X, DU Z, XU W Y, SU Z . AgriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 2017,45(W1):W122-W129.
doi: 10.1093/nar/gkx382 pmid: 28472432
[33] HUANG C, SUN H Y, XU D Y, LIANG Y M, WANG X F, XU G H, TIAN J G, WANG C L, LI D, WU L H , et at. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(2):E334-E341.
doi: 10.1073/pnas.1718058115 pmid: 29279404
[34] KHAN S, ROWE S C, HARMON F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biology, 2010,10(1):126.
doi: 10.1186/1471-2229-10-126 pmid: 20576144
[35] GUO L, WANG X, ZHAO M, HUANG C, LI C, LI D, YANG C, YORK A M, XUE W, XU G, LIANG Y, CHEN Q, DOEBLEY J F, TIAN F . Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Current Biology, 2018,28(18):3005-3015.
[36] MENG X, MUSZYNSKI M G, DANILEVSKAYA O N . The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. The Plant Cell, 2011,23(3):942-960.
[37] SHEEHAN M J, NACHMAN M W . Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nature Communications, 2014,5:4800.
doi: 10.1038/ncomms5800 pmid: 25226282
[38] 曾滔, 赵福平, 王光凯, 吴明明, 魏彩虹, 张莉, 李利, 张红平, 杜立新 . 基于群体分化指数FST的绵羊全基因组选择信号检测. 畜牧兽医学报, 2013,44(12):1891-1899.
doi: 10.11843/j.issn.0366-6964.2013.12.005
ZENG T, ZHAO F P, WANG G K, WU M M, WEI C H, ZHANG L, LI L, ZHANG H P, DU L X . Genome-wide detection of selection signatures in sheep populations with use of population differentiation index FST. Acta Veterinaria et Zootechnica Sinica, 2013,44(12):1891-1899. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2013.12.005
[39] HUANG X, SANG T, ZHAO Q, QI F, ZHAO Y, LI C Y ZHU C R, LU T T, ZHANG Z W, LI M , et at. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010,42(11):961.
doi: 10.1038/ng.695 pmid: 20972439
[40] MCVICKER G, GORDON D, DAVIS C, GREEN P . Widespread genomic signatures of natural selection in hominid evolution. PLoS Genetics, 2009,5(5):e1000471.
doi: 10.1371/journal.pgen.1000471 pmid: 19424416
[41] 薛周舣源, 宋显威, 吴林慧, 王露珍, 崔家安, 孙章健, 张政, 马云龙 . 畜禽选择信号检测方法及其统计学问题. 畜牧兽医学报, 2018,49(6):1099-1107.
XUE Z Y Y, SONG X W, WU L H, WANG L Z, CUI J A, SUN Z J, ZHANG Z, MA Y L . The identification methods of selection signatures in livestock and its statistical problems. Acta Veterinaria et Zootechnica Sinica, 2018,49(6):1099-1107. (in Chinese)
[42] KUMAR I, SWAMINATHAN K, HUDSON K, HUDSON M E . Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling. Journal of Experimental Botany, 2016,67(14):4231-4240.
doi: 10.1093/jxb/erw217 pmid: 27262126
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!