Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4306-4315.doi: 10.3864/j.issn.0578-1752.2018.22.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil

LÜ Bo(),WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang()   

  1. College of Resources and Environment, Huazhong Agricultural University/Microelement Research Center, Wuhan 430070
  • Received:2018-04-08 Accepted:2018-07-17 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】A pot experiment of cabbage was conducted to investigate the various effects of 3 soil amendments (biochar (C), potassium humate (HA-K) and lime (CaO)) on plant growth and soil fertility of yellow-brown soil and red soil, so as to provide information for reasonable use of soil amendments.【Method】The present research set 4 different treatments in 2 different types of soil to study biomass, nutrient content, soluble protein and malondialdehyde content of cabbage and pH, available nutrients content, exchange-aluminum (Al) content and enzyme activity in soil.【Result】The results showed that: (1) compared with control treatment, the application of biochar and lime promoted the growth and stress-tolerance of cabbage in yellow-brown soil and red soil, in consequence of improved cabbage yield, nitrogen (N) and potassium (K) content, soluble protein content, and reduced malondialdehyde content in leaf. However, after HA-K application, the cabbage yield in yellow-brown soil was increased to 25.93 g/plant, while only 0.18 g/plant in red soil; (2) The effects of the 3 amendments on soil fertility differed in yellow-brown soil and red soil were different. Biochar application increased soil pH, available phosphorus (P), available K, organic matter, activities of urease and acid phosphatase, which improved soil fertility of the two types of soil. In addition, the supply of C significantly decreased alkaline hydrolysis N and exchange-Al content in soil. The soil pH and organic matter content in yellow-brown soil increased by 1.39 units and 168.4%, respectively, and the exchange-Al content decreased by 89.3%, while the pH value and organic matter content in red soil increased by 0.82 and 775.6%, respectively, and the exchange-Al content decreased by 93.9%. What was more, the application of HA-K and CaO significantly increased soil pH and invertase activity, and reduced exchange-Al content in both two types of soil. However, there were no significant effects of HA-K on available P, available K, organic matter, urease and acid phosphatase activities, and exchange-Al content, while significantly reduced the content of alkali-hydrolyzed N. The application of CaO only reduced soil alkaline N, available P and organic matter.【Conclusion】Generally, All of the 3 different soil amendments had great effects on the growth of cabbage and soil fertility in two different types of soil. Lime and biochar were recommended soil amendments, which could improve not only the soil fertility but also the yield of cabbage, and the application effect of humate potassium in yellow brown soil was better than that in red soil.

Key words: biochar, humate potassium, lime, cabbage growth, soil fertility, yellow-brown soil, red soil

Table 1

Basic properties of tested soil and modifier"

土壤与改良剂
Soil and modifier
pH 碱解氮
Available nitrogen
(mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
有机质
Organic matter
(g·kg-1)
黄棕壤YS 5.2 87.5 5.91 169.4 13.3
红壤RS 4.8 35 2.3 110.9 7.4
生石灰CaO 12.6 / / / /
腐殖酸钾HA-K 8.5 124.2 / 59700 387
生物炭C 8 102.4 274.74 4280 477.6

Table 2

Effects of modifiers on agronomic characters and biomass of cabbage in two types of soil"

土壤类型 Soil type 处理 Treatment 株高 Plant height (cm) 产量 Yield (g/plant) 每株叶片数 Leaf number per plant
黄棕壤 YS CK 9.4±0.3c 15.90±0.24c 7.7±0.6b
HA-K 13.6±0.6a 25.93±2.04a 8.0±0.0b
C 11.7±0.5b 23.83±0.77b 8.3±0.6b
CaO 12.8±0.8a 26.50±0.16a 9.3±0.6a
红壤 RS CK 1.4±0.1d 0.07±0.01c 3.0±0.0d
HA-K 2.3±0.2c 0.18±0.02c 4.3±0.6c
C 6.2±0.1b 7.26±0.91b 5.4±0.7b
CaO 9.2±0.8a 9.83±0.95a 8.3±0.6a

Table 3

Effect of different modifiers on the nutrient absorption of cabbage in two types of soil"

土壤类型
Soil type
处理
Treatment
N P K
NC(g·kg-1 TAA(mg/plant) NC(g·kg-1 TAA(mg/plant) NC(g·kg-1 TAA(mg/plant)
黄棕壤 YS CK 23.30c 28.60c 5.27c 6.47b 16.70b 20.54b
HA-K 24.64bc 46.21b 8.18a 15.33a 19.17a 35.93a
C 24.98b 43.97b 6.40b 11.26ab 17.42b 30.66a
CaO 26.54a 50.76a 6.84b 13.07a 17.29b 33.07a
红壤 RS CK 13.44b 0.27c 0.50b 0.01c 2.49c 0.05c
HA-K 9.74c 0.39c 0.20c 0.01c 1.89c 0.08c
C 26.63a 9.25b 2.53a 0.88b 18.18a 6.32b
CaO 27.20a 20.27a 4.13a 3.08a 16.02b 11.93a

Fig. 1

Effects of modifiers on soluble protein and Malondialdehyde content in cabbage leaves Different small letters in the same column meant significant difference at 0.05 level. The same as below"

Table 4

Effect of different modifiers on soil nutrients under two types of soil"

土壤类型
Soil type
处理
Treatment
碱解氮
Alkaline nitrogen
(mg·kg-1
有效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
有机质
Organic matter
(g·kg-1)
黄棕壤
YS
CK 82.83±2.02a 7.73±0.10c 246±4b 13.3±0.6b
HA-K 77.00±3.50b 9.07±0.54b 240±7b 19.2±0.4b
C 65.92±0.73c 12.34±0.43a 267±6a 35.7±1.4a
CaO 60.67±3.64d 6.20±0.34d 193±15c 7.5±0.3c
红壤
RS
CK 124.83±2.67a 3.87±0.28a 329±12b 4.1±0.5b
HA-K 113.17±1.01b 3.81±0.19a 307±18b 5.9±0.0b
C 89.25±3.03c 3.92±0.47a 456±4a 35.9±0.9a
CaO 54.98±2.64d 3.66±0.29a 273±3c 3.3±0.3c

Fig. 2

Effects of different modifiers on pH and exchange-Al in two types of soil"

Table 5

Effects of different modifiers on soil enzyme activities under two types of soil"

土壤类型 Soil type 处理 Treatment 脲酶 Urease (mg·g-1·h-1) 蔗糖酶 Sucrase (mg·g-1·h-1) 酸性磷酸酶 Acid phosphatase (μg·g-1·h-1)
黄棕壤
YS
CK 0.33±0.03c 14.95±1.48c 24.27±0.66b
HA-K 0.34±0.01c 21.63±0.94b 24.80±0.80b
C 0.41±0.02a 15.45±1.39c 36.86±2.26a
CaO 0.37±0.04b 29.75±0.97a 23.27±1.91b
红壤
RS
CK 0.21±0.04a 13.33±0.54c 6.48±0.41b
HA-K 0.21±0.02a 33.68±1.72b 7.02±0.76b
C 0.25±0.01a 10.81±0.83c 15.06±1.08a
CaO 0.15±0.02b 53.80±5.00a 1.91±0.37c
[1] 赵天龙, 解光宁, 张晓霞, 邱林权, 王娜, 张素芝 . 酸性土壤上植物应对铝胁迫的过程与机制. 应用生态学报, 2013,24(10):3003-3011.
ZHAO T L, XIE G N, ZHANG X X, QIU L Q, WANG N, ZHANG S Z . Process and mechanism of plants in overcoming acid soil aluminum stress. Chinese Journal of Applied Ecology, 2013,24(10):3003-3011. (in Chinese)
[2] ZHAO M Q, JIN F L, SUN Z W, SHI Y F . Effects of pyrolysis condition on basic group of biochar and amelioration of acid soil. Journal of Soil & Water Conservation, 2014,28(4):288-299.
[3] MENG C, LU X, CAO Z, HU Z, MA W . Long-term effects of lime application on soil acidity and crop yields on a red soil in central Zhejiang. Plant & Soil, 2004,265(1/2):101-109.
doi: 10.1007/s11104-005-8941-y
[4] KUMAR D, SINGH A P, RAHA P, RAKSHIT A, SINGH C M, VERMA R, SINGH S, MAURYA B R, KUMAR A G . Potassium humate: A potential soil conditioner and plant growth promoter. International Journal of Agriculture Environment & Biotechnology, 2013,6(3):441.
[5] MANYA J J . Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 2012,46(15):7939.
doi: 10.1021/es301029g pmid: 22775244
[6] NOVAK J M, BUSSCHER W J, LAIRD D L, AHMEDNA M, NIANDOU M A, WATTS D W . Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 2009,174(2):105-112.
doi: 10.1097/SS.0b013e3181981d9a
[7] XU G, WEI L L, SUN J N, SHAO H B, CHANG S X . What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecological Engineering, 2013,52(2):119-124.
doi: 10.1016/j.ecoleng.2012.12.091
[8] 胡敏, 向永生, 鲁剑巍 . 不同调理剂对酸性土壤降酸效果及大麦幼苗生长的影响. 中国土壤与肥料, 2017(3):118-124.
doi: 10.11838/sfsc.20170320
HU M, XIANG Y S, LU J W . Effects of soil conditioner on acid reduction and the seeding growth of barley. Soil and Fertilizer Sciences in China, 2017(3):118-124. (in Chinese)
doi: 10.11838/sfsc.20170320
[9] 张济世, 于波涛, 张金凤, 刘玉明, 蒋曦龙, 崔振岭 . 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响. 植物营养与肥料学报, 2017,23(3):704-711.
doi: 10.11674/zwyf.16415
ZHANG J S, YU B T, ZHANG J F, LIU Y M, JIANG X L, CUI Z L . Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. Journal of Plant Nutrition and Fertilizers, 2017,23(3):704-711. (in Chinese)
doi: 10.11674/zwyf.16415
[10] 张祥, 王典, 姜存仓, 朱盼, 雷晶, 彭抒昂 . 生物炭对我国南方红壤和黄棕壤理化性质的影响. 中国生态农业学报, 2013,21(8):979-984.
doi: 10.3724/SP.J.1011.2013.00979
ZHANG X, WANG D, JIANG C C, ZHU P, LEI J, PENG S A . Effect of biochar on physicochemical properties of red and yellow brown soils in the south China region. Chinese Journal of Eco-Agriculture, 2013,21(8):979-984. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00979
[11] LIU F, ZHANG J, ZHANG W . The physiological effects of calcium oxide on rice seedlings. Chinese Bulletin of Botany, 2001,18(4):490-495.
[12] LIU Z, RONG Q, ZHOU W, LIANG G . Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. Plos One, 2017,12(3):e0172767.
doi: 10.1371/journal.pone.0172767 pmid: 28263999
[13] 于寒青, 孙楠, 吕家珑, 高菊生, 王伯仁, 徐明岗 . 红壤地区三种母质土壤熟化过程中有机质的变化特征. 植物营养与肥料学报, 2010,16(1):92-98.
doi: 10.4028/www.scientific.net/AMM.37-38.1549
YU H Q, SUN N, LÜ J L, GAO J S, WANG B R, XU M G . Organic matter changes in three parent soils with different long-term fertilizations in red soil regions of southern China. Journal of Plant Nutrition and Fertilizers, 2010,16(1):92-98. (in Chinese)
doi: 10.4028/www.scientific.net/AMM.37-38.1549
[14] 包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青 . 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012,45(20):4197-4204.
doi: 10.3864/j.issn.0578-1752.2012.20.009
BAO Y X, XU M G, LÜ F T, HUANG Q H, NIE J, ZHANG H M, YU H Q . Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012,45(20):4197-4204. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.009
[15] 陈心想, 耿增超, 王森, 赵宏飞 . 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报, 2014,33(4):751-758.
doi: 10.11654/jaes.2014.04.019
CHEN X X, GENG Z C, WANG S, ZHAO H F . Effects of biochar amendment on microbial biomass and enzyme activities in loess soil. Journal of Agro-Environment Science, 2014,33(4):751-758. (in Chinese)
doi: 10.11654/jaes.2014.04.019
[16] 王学奎 . 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2015.
WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment. 2rd ed. Beijing: Higher Education Press, 2015. ( in Chinese)
[17] 鲍士旦 . 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis, 3th ed. Beijing: China Agriculture Press, 2000. ( in Chinese)
[18] 周礼恺 . 土壤酶学. 北京: 科学出版社, 1987.
ZHOU L K . Soil Enzymology . Beijing: Science Press, 1987. ( in Chinese)
[19] 庞叔薇, 康德梦, 王玉保, 林铁 . 化学浸提法研究土壤中活性铝的溶出及形态分布. 环境化学, 1986(3):70-78.
PANG S W, KANG D M, WANG Y B, LIN T . Studies on the leaching of active aluminum from soil and the distribution of aluminum species by chemical extraction.Environmental Chemistry, 1986(3):70-78. (in Chinese)
[20] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财 . 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50(6):1031-1046.
doi: 10.3864/j.issn.0578-1752.2017.06.005
WANG Y H, HUANG Y, XIN M H, YUAN S S, KANG G Z, FENG W, XIE Y X, ZHU Y J, GUO T C . Effects of the year-round management model of N,P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Scientia Agricultura Sinica, 2017,50(6):1031-1046. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.06.005
[21] 张德闪, 王宇蕴, 汤利, 郑毅, 左建花 . 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013,19(1):127-133.
ZHANG D S, WANG Y Y, TANG L, ZHENG Y, ZUO J H . Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH. Plant Nutrition and Fertilizer Science, 2013,19(1):127-133. (in Chinese)
[22] 王欣, 尹带霞, 张凤, 谭长银, 彭渤 . 生物炭对土壤肥力与环境质量的影响机制与风险解析. 农业工程学报, 2015,31(4):248-257.
doi: 10.3969/j.issn.1002-6819.2015.04.035
WANG X, YIN D X, ZHANG F, TAN C Y, PENG B . Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(4):248-257. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2015.04.035
[23] 梁太波, 王振林, 王汝娟, 刘兰兰, 史春余 . 腐殖酸钾对生姜根系生长发育及活性氧代谢的影响. 应用生态学报, 2007,18(4):813-817.
LIANG T B, WANG Z L, WANG R J, LIU L L, SHI C Y . Effects of potassium humate on ginger root growth and its active oxygen metabolism. Chinese Journal of Applied Ecology, 2007,18(4):813-817. (in Chinese)
[24] 王宇函, 姜存仓, 吕波, 闫磊 . 腐殖酸钾对小白菜产量、生理特性及养分利用效率的影响. 华中农业大学学报, 2018(1):58-63.
WANG Y H, JIANG C C, LÜ B, YAN L . Effects of potassium humate on yield, physiological characteristics and nutrient use efficiency of pakchoi.Journal of Huazhong Agricultural University, 2018(1):58-63. (in Chinese)
[25] KALIS E J, TEMMINGHOFF E J, WENG L, RIEMSDIJK W H . Effects of humic acid and competing cations on metal uptake by lolium perenne. Environmental Toxicology & Chemistry, 2010,25(3):702-711.
doi: 10.1897/04-576R.1 pmid: 16566154
[26] DOBRANSKYTE A, JUGDAOHSINGH R, MCCROHAN C R, STUCHLIK E, POWELL J J, WHITE K N . Effect of humic acid on water chemistry, bioavailability and toxicity of aluminum in the freshwater snail, lymnaea stagnalis, at neutral pH. Environmental Pollution, 2006,140(2):340-347.
doi: 10.1016/j.envpol.2005.06.030 pmid: 16242225
[27] 张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010,19(11):2713-2717.
doi: 10.3969/j.issn.1674-5906.2010.11.034
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010,19(11):2713-2717. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2010.11.034
[28] 宋大利, 习向银, 黄绍敏, 张水清, 袁秀梅, 黄伏森, 刘阳, 王秀斌 . 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响. 植物营养与肥料学报, 2017,23(2):369-379.
doi: 10.11674/zwyf.16399
SONG D L, XI X Y, HUANG S M, ZHANG S Q, YUAN X M, HUANG F S, LIU Y, WANG X B . Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2017,23(2):369-379. (in Chinese)
doi: 10.11674/zwyf.16399
[29] ZHAO X R, DAN L I, KONG J, LIN Q M . Does biochar addition influence the change points of soil phosphorus leaching? Journal of Integrative Agriculture, 2014,13(3):499-506.
doi: 10.1016/S2095-3119(13)60705-4
[30] ZHAI L, CAIJI Z, LIU J, WANG H Y, REN T Z, GAI X P, XI B, LIU H B . Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology & Fertility of Soils, 2015,51(1):113-122.
doi: 10.1007/s00374-014-0954-3
[31] 马良, 徐仁扣 . pH和添加有机物料对3种酸性土壤中磷吸附-解吸的影响. 生态与农村环境学报, 2010,26(6):596-599.
MA L, XU R K . Effects of regulation of pH and application of organic material on adsorption and desorption of phosphorus in three types of acid soils. Journal of Ecology and Rural Environment, 2010,26(6):596-599. (in Chinese)
[32] HALIM M, CONTE P, PICCOLO A . Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 2003,52(1):265-275.
doi: 10.1016/S0045-6535(03)00185-1 pmid: 12729711
[33] PRADO A G, AIROLDI C, ZHANG Z . Humic acid-divalent cation interactions. Thermochimica Acta, 2003,405(2):287-292.
doi: 10.1016/S0040-6031(03)00196-5
[34] ZHU X, CHEN B, ZHU L, XING B . Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 2017,227:98.
doi: 10.1016/j.envpol.2017.04.032 pmid: 28458251
[35] 赵军, 耿增超, 尚杰, 耿荣, 王月玲, 王森, 赵宏飞 . 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响. 生态学报, 2016,36(8):2355-2362.
doi: 10.5846/stxb201410232083
ZHAO J, GENG Z C, SHANG J, GENG R, WANG Y L, WANG S, ZHAO H F . Effects of biochar and biochar-based ammonium nitrate fertilizers on soil microbial biomass carbon and nitrogen and enzyme activities. Acta Ecologica Sinica, 2016,36(8):2355-2362. (in Chinese)
doi: 10.5846/stxb201410232083
[36] 李兆林, 赵敏, 王建国, 潘相文, 陈渊, 丁希武 . 施用生石灰对土壤酶活性及大豆产量的影响. 土壤与作物, 2008,24(4):480-484.
doi: 10.3969/j.issn.1001-0068.2008.04.021
LI Z L, ZHAO M, WANG J G, PAN X W, CHEN Y, DING X W . Effect of quicklime application on soil enzymes activity and soybean yield. System Sciences & Comprehensive Studies in Agriculture, 2008,24(4):480-484. (in Chinese)
doi: 10.3969/j.issn.1001-0068.2008.04.021
[1] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[2] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[3] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[4] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[5] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[6] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[7] ZHOU Liang,XIAO Feng,XIAO Huan,ZHANG YuSheng,AO HeJun. Effects of Lime on Cadmium Accumulation of Double-Season Rice in Paddy Fields with Different Cadmium Pollution Degrees [J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791.
[8] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[9] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[10] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[11] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[12] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[13] ZHENG FuLi,LIU Ping,LI GuoSheng,ZHANG BoSong,LI Yan,WEI JianLin,TAN DeShui. Organic-Inorganic Coordinated Regulation to Wheat-Maize Double Crop Yield and Soil Fertility [J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.
[14] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[15] CAO BinBin,ZHU YiHui,JIANG YuHan,SHI JiangLan,TIAN XiaoHong. Effects of Lime and Straw Addition on SOC Sequestration in Tier Soil [J]. Scientia Agricultura Sinica, 2020, 53(20): 4215-4225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!