Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4355-4364.doi: 10.3864/j.issn.0578-1752.2020.21.005

• SPECIAL FOCUS: HIGH EFFICIENCY UTILIZATION OF WATER AND FERTILIZER OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

Organic-Inorganic Coordinated Regulation to Wheat-Maize Double Crop Yield and Soil Fertility

ZHENG FuLi(),LIU Ping,LI GuoSheng,ZHANG BoSong,LI Yan,WEI JianLin,TAN DeShui()   

  1. Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Shandong Provincial Key Laboratory of Plant Nutrition and Fertilizer, Ji’nan 250100
  • Received:2020-05-11 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11
  • Contact: DeShui TAN E-mail:miss_xin@126.com;tandeshui@163.com

Abstract:

【Objective】The objectives of this study were to discuss the effects of different organic-inorganic operation modes on crop yield, nitrogen efficiency and soil nutrients characteristics under the condition that wheat-maize straw returning to the field completely in two seasons, so as to provide a theoretical support for rational utilization of organic nutrient resources and scientific soil fertility culture in a wheat-maize cropping system.【Method】The experiment studied effects of different organic-inorganic operation modes on yield composition, nitrogen nutrient absorption, soil organic matter and stable aggregate, through designing the combination of chemical fertilizer with different amounts of organic fertilizer and straw-decomposing inoculant. Six experiment treatments were designed: F treatment was only chemical fertilizer, FA treatment was chemical fertilizer and straw-decomposing inoculants, FM1 treatment was chemical fertilizer and 1 500 kg·hm-2 organic fertilizer, FM2 treatment was chemical fertilizer and 3 000 kg·hm-2 organic fertilizer, FM3 treatment was chemical fertilizer and 4 500 kg·hm-2 organic fertilizer, FAM2 treatment was chemical fertilizer and 3 000 kg·hm-2 organic fertilizer and straw-decomposing inoculants.【Result】(1)Compared with single chemical fertilizer, application organic fertilizer and straw-decomposing inoculant could significantly increase grain yield of wheat-maize. The yield of chemical fertilizer combined with 4 500 kg·hm-2 organic fertilizer was the highest, wheat increased by 20.6%, maize by 10.6%. Combined chemical fertilizer with 3 000 kg·hm-2 organic fertilizer and straw-decomposing inoculant, the yield of wheat and maize increased by 19.5% and 8.2%, respectively. The increase of yield was due to the synergistic improvement of various components. The number of ears and grains per ear of wheat increased significantly and the number of grains per row increased most significantly in maize. (2) The increasing of organic fertilizer and straw-decomposing inoculant could promote the migration of nitrogen to the grain, improve the nitrogen harvest index, and increase the nitrogen accumulation in wheat and maize. The nitrogen accumulation and harvest index for both of FM3 treatment (application with 4 500 kg·hm-2 organic fertilizer) and FAM2 treatment (application with 3 000 kg·hm-2 organic fertilizer and straw-decomposing inoculant) were significantly higher than F treatment with single application of chemical fertilizer. Compared the treatment with non-bacterial, the NPFP of FA and FAM2 treatments that combined with straw-decomposing inoculant increased by 1.3-1.6 kg·kg-1. (3) The content of total nitrogen, alkali-hydrolyzed nitrogen and organic matter in the soil were significantly increased by increasing the organic fertilizer and straw-decomposing inoculant. The content of total nitrogen and organic matter in soil of FM3 treatment was the highest, and the annual total nitrogen increased by 0.17 g·kg-1 and the organic matter increased by 1.97 g·kg-1 compared with F treatment after two years. Different organic and inorganic application modes significantly reduced soil bulk density and increased soil porosity and water-stable aggregates. 【Conclusion】By two years field experiments, the application of organic fertilizer and straw-decomposing inoculant could increase the yield of wheat and maize, promote nitrogen absorption and transport, and improve soil structure and soil fertility. Under the conditions of this experiment, FAM2 treatment was recommended as an effective fertilization technology model for wheat-maize rotation in this region.

Key words: organic-inorganic synergy, straw-decomposing inoculants, yield, nitrogen efficiency, soil fertility

Table 1

Experiment design"

处理
Treatment
有机肥量Organic fertilizer consumption
(kg·hm-2)
有机肥NPK量
Organic fertilizer
(kg·hm-2)
小麦季化肥NPK量
Wheat-chemical fertilizer
(kg·hm-2)
玉米季化肥NPK量
Maize-chemical fertilizer
(kg·hm-2)
小麦季秸秆腐熟剂
Wheat-straw-
decomposing inoculant (kg·hm-2)
玉米季秸秆腐熟剂Maize-straw-
decomposing inoculant (kg·hm-2)
N P2O5 K2O N P2O5 K2O N P2O5 K2O
F 0 0 0 0 216 112.5 112.5 195 45 60 0 0
FA 0 0 0 0 216 112.5 112.5 195 45 60 15 15
FM1 1500 32.55 22.20 35.25 216 112.5 112.5 195 45 60 0 0
FM2 3000 65.10 44.40 70.50 216 112.5 112.5 195 45 60 0 0
FM3 4500 97.65 66.60 105.75 216 112.5 112.5 195 45 60 0 0
FAM2 3000 65.10 44.40 70.50 216 112.5 112.5 195 45 60 15 15

Table 2

Yield analysis of wheat and maize"

处理
Treatment
小麦 Wheat 玉米 Maize
2018 2019 2018 2019
产量
Yield (kg·hm-2)
增产
Increase (%)
产量
Yield (kg·hm-2)
增产
Increase (%)
产量
Yield (kg·hm-2)
增产
Increase (%)
产量
Yield (kg·hm-2)
增产
Increase (%)
F 8820.7c 8909.3c 7309.0c 7362.3c
FA 9124.5bc 3.5 9204.0bc 3.3 7551.1bc 3.3 7612.8bc 3.4
FM1 9300.7b 5.4 9680.3b 8.7 7712.3b 5.5 8027.1b 9.0
FM2 9722.7ab 10.2 10160.4ab 14 7737.7b 5.9 8033.1b 9.1
FM3 10479.4a 18.8 10907.1a 22.4 7949.4a 8.8 8273.8a 12.4
FAM2 10335.0a 17.2 10852.5a 21.8 7783.9b 6.5 8081.2b 9.8

Table 3

Effects of different organic-inorganic cooperative models on wheat-maize yield factor"

处理
Treatment
小麦 Wheat 玉米 Maize
穗数
Ears per
hectare
穗粒数
Grains per spiker
小穗数
spikelet number
千粒重 1000-kernel weight (g) 穗行数
Ear row number
行粒数
Kernel seeds per row
穗长
Ear length
(cm)
穗粗
Ear thickness (cm)
百粒重
Hundred-grain weight (g)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
F 510.0b 513.0b 41.6b 41.8b 17.0b 16.9b 41.2a 41.3a 18.6a 18.8a 24.8b 25.0b 13.6b 13.7b 5.1b 5.1b 32.62a 32.78a
FA 526.5b 529.5b 42.1b 42.2b 18.1a 18.2a 42.1a 42.4a 19.5a 19.6a 25.5b 25.8b 14.5ab 14.6ab 5.2ab 5.4ab 31.43a 31.48a
FM1 519.0b 523.5b 42.7b 42.9b 18.4a 18.5a 42.2a 42.4a 18.2a 18.2a 32.0a 32.2a 16.2a 16.4a 5.0b 5.2b 30.02b 30.07b
FM2 552.0a 556.5a 42.0b 42.1b 18.2a 18.1a 42.3a 42.5a 18.3a 18.4a 28.1ab 28.0ab 15.4ab 15.5ab 5.2ab 5.3ab 32.03a 32.13a
FM3 556.5a 561.0a 43.3b 43.6b 17.2ab 17.4ab 43.1a 43.7a 18.1a 18.4a 29.3ab 29.6ab 15.8a 15.9a 5.1b 5.2b 31.11a 31.24a
FAM2 543.0ab 547.5ab 44.6a 45.8a 18.3a 18.4a 42.5a 42.7a 19.2a 19.6a 25.5b 25.7b 14.5ab 14.6ab 5.5a 5.6a 32.05a 32.09a

Table 4

Nitrogen accumulation and distribution in different parts of wheat -maize"

处理
Treatment
小麦 Wheat 玉米 Maize
籽粒氮素累积量 Grain nitrogen accumulation
(kg·hm-2)
叶片氮素累积量Leaf nitrogen accumulation
(kg·hm-2)
茎部氮素累积量Stem nitrogen accumulation
(kg·hm-2)
氮素收获
指数
NHI (%)
籽粒氮素累积量 Grain nitrogen accumulation
(kg·hm-2)
叶片氮素累积量Leaf nitrogen accumulation
(kg·hm-2)
茎部氮素累积量Stem nitrogen accumulation
(kg·hm-2)
氮素收获
指数
NHI (%)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
F 164.3c 167.5c 6.2b 6.3b 25.2ab 25.6ab 84.0c 84.0c 125.3c 126.4c 26.1b 26.3b 25.2c 25.5b 70.9b 70.9b
FA 172.4bc 173.8bc 5.8b 5.9b 26.2a 26.5a 84.2c 84.3c 136.7b 138.9b 26.8b 27.1b 26.4bc 26.7b 72.0a 72.1a
FM1 182.8b 194.8b 6.0b 6.1b 24.5b 25.4ab 86.1b 86.1b 139.4ab 145.3ab 29.2a 30.4a 27.4b 28.6ab 71.0b 71.1ab
FM2 184.3b 195.4ab 5.6b 5.8b 24.7b 25.9a 86.2b 86.1b 142.4a 147.7ab 29.8a 31.1a 29.8a 30.1a 70.9b 70.7b
FM3 207.6a 215.7a 5.7b 5.8b 23.2b 24.0b 87.7a 87.8a 144.9a 151.3a 30.1a 31.4a 28.0ab 29.3a 71.2b 71.4ab
FAM2 200.0a 208.9ab 7.8a 8.2a 25.3a 26.7a 85.4bc 85.3bc 143.7a 149.1a 28.4a 29.7ab 27.4b 28.7a 72.1a 71.9a

Table 5

Wheat - maize annual nitrogen fertilizer productivity"

处理
Treatment
化肥氮
Fertilizer N (kg·hm-2)
有机肥氮
Organic N (kg·hm-2)
氮肥偏生产力 NPFP (kg·kg-1)
2018 2019
F 411 0 39.2b 39.6b
FA 411 0 40.6a 40.9a
FM1 411 32.55 38.4b 39.9b
FM2 411 65.10 36.7c 38.2bc
FM3 411 97.65 36.2c 37.7c
FAM2 411 65.10 38.1b 39.8b

Table 6

Physical and chemical characteristics of soil after maize harvest(2019)"

处理
Treatment
全氮
Total nitrogen
(g·kg-1)
有机质
Organic matter (g·kg-1)
碱解氮
Avail-nitrogen (mg·kg-1)
土壤容重
Bulk density
(g·cm-3)
土壤孔隙度
Porosity
(%)
水稳性大团聚体
Water-stable aggregates
(%)
F 1.06b 12.90c 118.35b 1.53a 37.6b 47.2b
FA 1.09b 13.04c 123.67b 1.51a 38.7b 55.2ab
FM1 1.16b 13.72b 123.78b 1.53a 38.6b 52.3ab
FM2 1.15b 14.81a 135.67a 1.47b 40.3ab 54.1ab
FM3 1.23a 14.87a 134.84a 1.48b 42.2a 55.8ab
FAM2 1.19b 13.76b 136.43a 1.45b 42.9a 61.1a

Table 7

Annual economic benefit evaluation (yuan/hm2)"

处理
Treatment
有机肥投入
Organic fertilizer input
菌剂投入
Inoculants input
人工成本
Labor cost
总收入
Gross income
增加收益
Increase income
F 0 0 0 33795
FA 0 600 30 34944 519
FM1 900 0 150 36211 1366
FM2 1800 0 150 37251 1506
FM3 2700 0 150 39365 2720
FAM2 1800 600 180 38800 2425
[1] 赵秉强. 施肥制度与土壤可持续利用. 北京: 科学出版社, 2012, 451-455.
ZHAO B Q. Fertilization Systems and Land Use Sustainability. Beijing: Science Press, 2012, 451-455. (in Chinese)
[2] 黄东风, 王利民, 李卫华, 邱少煊. 培肥措施培肥土壤的效果与机理研究进展. 中国生态农业学报, 2014,22(2):127-135.
HUANG D F, WANG L M, LI W H, QIU S X. Research progress on the effect and mechanism of fertilization measure on soil fertility. Chinese Journal of Eco-Agriculture, 2014,22(2):127-135. (in Chinese)
[3] 全国农业技术推广服务中心. 中国有机肥料资源. 北京: 中国农业出版社. 1999.
National Agro-Tech Extension and Service Center. Organic Fertilizer Resources in China. Beijing: China Agriculture Press, 1999. (in Chinese)
[4] 赵建宁, 张贵龙, 杨殿林. 中国粮食作物秸秆焚烧释放碳量的估算. 农业环境科学学报, 2011,30(4):812-816.
ZHAO J N, ZHANG G L, YANG D L. Estimation of carbon emission from burning of grain crop residues in China. Journal of Agro-Environment Science, 2011,30(4):812-816. (in Chinese)
[5] 朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005,23(4):47-51.
ZHU Z L, SUN B, YANG L Z, ZHANG L X. Policy and countermeasures to control non-point pollution of agriculture in China. Science &Technology Review, 2005,23(4):47-51. (in Chinese)
[6] 孟琳, 张小莉, 蒋小芳, 王秋君, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率. 中国农业科学, 2009,42(2):532-542.
MENG L, ZHANG X L, JIANG X F, WANG Q J, HUANG Q W, XU Y C, YANG X M, SHEN Q R. Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and their proper substitution rate. Scientia Agricultura Sinica, 2009,42(2):532-542. (in Chinese)
[7] 林治安, 赵秉强, 袁亮, HWAT B S. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009,42(8):2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009,42(8):2809-2819. (in Chinese)
[8] YADAV R L, DWIVEDI V S, PRASAD K, TOMAR O K, SHURPALI N J, PANDEY P S. Yields trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers. Field Crops Research, 2000,68(3):219-246.
[9] MANNA M C, SWARUP A, WANIHARI R H, RAVANKAR H N, SAHA M N, SINGH Y V, SAHI D K, SARAP P A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Research, 2004,93(2):264-280.
[10] GHOSH P K, RAMESH P, BANDYOPADHYAY K K, TRIPATHI A K, HATI K M, MISRA A K, ACHARYA C L. Comparative effectiveness of cattle manure, poultry manure, phosphor compost and fertilizer-NPK on three cropping systems in vert soils of semi-arid tropics. I. Crop yields and system performance. Bioresource Technology, 2004,95(1):77-83.
doi: 10.1016/j.biortech.2004.02.011 pmid: 15207299
[11] LIN Z A, CHANG X H, WANG D M, ZAHO G C, ZHAO B Q. Long-term fertilization effects on processing quality of wheat grain in the North China Plain. Field Crops Research, 2015,174:55-60.
[12] CAI Z C, QIN S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 2006,136(3):708-715.
[13] 蔡泽江, 孙楠, 王伯仁, 徐明岗, 黄晶, 张会民. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响. 植物营养与肥料学报, 2011,17(1):71-78.
CAI Z J, SUN N, WANG B R, XU M G, HUANG J, ZHANG H M. Effects of long-term fertilization on pH of red soil, crop yield sand uptakes of nitrogen, phosphorous and potassium. Plant Nutrition and Fertilizer Science, 2011,17(1):71-78. (in Chinese)
[14] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008,41(10):3133-3139.
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008,41(10):3133-3139. (in Chinese)
[15] 张娟, 沈其荣, 张亚丽, 曹金留, 冉炜, 褚贵新. 施用预处理秸秆的土壤供氮特征及冬小麦吸收的影响. 植物营养与肥料学报, 2004,10(1):24-28.
ZHANG J, SHEN Q R, ZHANG Y L, CAO J L, RAN W, CHU G X. Effects of application of pretreated rice straw on soil nitrogen supply and nitrogen uptake by winter wheat. Plant Nutrition and Fertilizer Science, 2004,10(1):24-28. (in Chinese)
[16] 鲁如坤. 土壤农化分析. 北京: 中国农业科技出版社, 1999: 12, 89, 150, 180, 194, 266, 309.
LU R K. Analysis Method of Agricultural Chemistry in Soil. Beijing: Agriculture and Science Press, 1999: 12, 89, 150, 180, 194, 266, 309.(in Chinese)
[17] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016,49(20):3934-3943.
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016,49(20):3934-3943. (in Chinese)
[18] 高洪军, 彭畅, 张秀芝, 李强, 朱平. 长期施肥对黑土活性有机质、pH 值和玉米产量的影响. 玉米科学, 2014,22(3):126-131.
GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P. Effects of long-term fertilization on maize yield, active organic matter and pH value of black soil. Journal of Maize Sciences, 2014,22(3):126-131. (in Chinese)
[19] 唐湘文, 黄晶, 王伯仁. 有机肥料用量对低产稻田土壤养分和水稻产量的影响. 湖南农业科学, 2017(9):33-36.
TANG X W, HUANG J, WANG B R. Effects of organic fertilizer amounton soil nutrients and rice yieldin low yield paddy fields. Journal of Hunan Agricultural Sciences, 2017(9):33-36. (in Chinese)
[20] SHISANYA C A, MUCHERU M W, MUGENDI D N, KUNG U J B. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya. Soil &Tillage Research, 2009,103:239-246.
[21] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil & Tillage Research, 2016,155:85-94.
[22] 于天一, 逄焕成, 李玉义, 王伯仁. 红壤旱地长期施肥对春玉米光合特性和产量的影响. 中国农业大学学报, 2013,18(2):17-21.
YU T Y, PANG H C, LI Y Y, WANG B R. Effects of long-term fertilization on photosynthetic characteristics and yield of spring maize in upland red soil. Journal of China Agricultural University, 2013,18(2):17-21. (in Chinese)
[23] 胡诚, 陈云峰, 乔艳, 刘东海, 张顺陶, 李双来. 秸秆还田配施腐熟剂对低产黄泥田的改良作用. 植物营养与肥料学报, 2016,22(1):59-66.
HU C, CHEN Y F, QIAO Y, LIU D H, ZHANG S T, LI S L. Effect of returning straw added with straw-decomposing inoculants on soil melioration in low-yielding yellow clayey soil. Plant Nutrition and Fertilizer Science, 2016,22(1):59-66. (in Chinese)
[24] 刘元东, 刘香坤, 姜玉琴, 朱玉成, 董旭勇, 王风英, 刘尚伟. B M 秸秆腐熟剂在小麦上的应用效果. 河南农业科学, 2011,40(12):77-79.
LIU Y D, LIU X K, JIANG Y Q, ZHU Y C, DONG X Y, WANG F Y, LIU S W. Research on B M applied straw decomposition inoculant in wheat production. Journal of Henan Agricultural Sciences, 2011, 40(12):77-79. (in Chinese)
[25] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响. 植物营养与肥料学报, 2015,21(2):318-325.
GAO H J, ZHU P, PENG C, ZHANG X Z, LI Q, ZHANG W J. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input. Plant Nutrition and Fertilizer Science , 2015,21(2):318-325. (in Chinese)
[26] 王小明, 谢迎新, 王永华, 王晨阳, 朱云集, 郭天财. 施氮模式对冬小麦/夏玉米产量及氮素利用的影响. 植物营养与肥料学报, 2011,17(3):578-582.
WANG X M, XIE Y X, WANG Y H, WANG C Y, ZHU Y J, GUO T C. Effects of nitrogen application mode on winter wheat/summer maize yield and nitrogen utilization. Plant Nutrition and Fertilizer Science, 2011,17(3):578-582. (in Chinese).
[27] 吕国红, 焦晓光, 王笑影, 谢艳兵. 不同施肥方式对农田有机碳含量的影响. 安徽农业科学, 2010,38(6):3035-3038.
LÜ G H, JIAO X G, WANG X Y, XIE Y B. Effects of different fertilization methods on organic carbon content in farm land. Journal of Anhui Agricultural Science, 2010,38(6):3035-3038. (in Chinese)
[28] WITT C, CASSMAN K G, OTTOW J C G, BIKER U. Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biology and Fertility of Soils, 1998,28:71-80.
[29] GOYAL S, CHANDER K, MUNDRA M C, KAPOOR K K. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil micro-bia properties under tropical conditions. Biology and Fertility of Soils, 1999,29:196-200.
[30] 李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响. 植物营养与肥料学报, 2019,25(10):1669-1678.
LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility. Plant Nutrition and Fertilizer Science, 2019,25(10):1669-1678. (in Chinese)
[31] 陈贵, 张红梅, 沈亚强, 程旺大. 猪粪与牛粪有机肥对水稻产量、养分利用和土壤肥力的影响. 土壤, 2018,50(1):59-65.
CHEN G, ZHANG H M, SHEN Y Q, CHENG W D. Application effects of swine and cow manures on rice yield, nutrient uptakes and use efficiencies and soil fertility. Soils, 2018,50(1):59-65. (in Chinese)
[32] 张赛, 王龙昌. 保护性耕作对土壤团聚体及其有机碳含量的影响. 水土保持学报, 2013,27(4):263-272.
ZHANG S, WANG L C. Effect of conservation tillage on stability and content of organic carbon in soil aggregates. Journal of Soil and Water Conservation, 2013,27(4):263-272. (in Chinese)
[33] 魏宇轩, 蔡红光, 张秀芝, 张晋京, 任军, 王立春. 不同种类有机肥施用对黑土团聚体有机碳及腐殖质组成的影响. 水土保持学报, 2018,32(3):258-263.
WEI Y X, CAI H G, ZHANG X Z, ZHANG J J, REN J, WANG L C. Effects of different organic manures application on organic carbon and humus composition of aggregate fractions in black soil. Journal of Soil and Water Conservation, 2018,32(3):258-263. (in Chinese)
[34] 王兴祥, 张桃林, 鲁如坤. 施肥措施对红壤结构的影响. 中国生态农业学报, 2001,9(3):70-72.
WANG X X, ZHANG T L, LU R K. Effect of application of fertilizer on soil structure in red soil. Chinese Journal of Eco-Agriculture, 2001,9(3):70-72. (in Chinese)
[35] 韩梦颖, 王雨桐, 高丽, 刘振宇, 刘忠宽, 曹卫东, 刘晓云. 降解秸秆微生物及秸秆腐熟剂的研究进展. 南方农业学报, 2017,48(6):1024-1030.
HAN M Y, WANG Y T, GAO L, LIU Z Y, LIU Z K, CAO W D, LIU X Y. Straw degradation microorganism and straw decomposing inoculant: A review. Journal of Southern Agriculture, 2017,48(6):1024-1030. (in Chinese)
[36] 艾天成, 李方敏, 万健民, 王丰. 不同有机肥对土地平整后土壤肥力及水稻生育的影响. 湖北农学院学报, 2002,22(3):206-209.
AI T C, LI F M, WAN J M, WANG F. The effect of different organic fertilizers on soil fertility of the recovered land and the growth of rice. Journal of Hubei Agricultural College, 2002,22(3):206-209. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!