Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4316-4327.doi: 10.3864/j.issn.0578-1752.2018.22.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Factors of Farmland Conversion and Its Temporal and Spatial Characteristics: An Integrated Model

CUI XuFeng(),MA YunMeng,ZHANG GuangHong()   

  1. School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
  • Received:2018-06-14 Accepted:2018-10-11 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】The purpose of this paper was to reveal the temporal and spatial characteristics of the factors affecting farmland conversion, and to provide decision-making information support for policy making for the protection and utilization of farmland.【Method】Based on the panel data of farmland conversion from 2006 to 2015, an integrated model of "ordinary regression model-panel model-geographically weighted regression-geographically and temporally weighted regression" (abbreviately named “OPGT” ) was established to analyze the factors of farmland conversion【Result】The ordinary regression model, GWR and GTWR model results showed that urban population growth, fixed asset investment, economy, arable and industrial structure variables all passed the significance test; Moran's I of farmland conversion was 0.740, and passed significance test at the 1% level. The results showed that there was a significant positive spatial correlation of farmland conversion. Ordinary regression model, GWR and GTWR models were used to estimate the equations, and the fit goodness of the equations were 0.689, 0.785 and 0.858, respectively. The interpretation ability of GWR and GTWR models was improved significantly under the condition of adding spatio-temporal weight information. The results of GWR and GTWR models showed that the elastic coefficients of factors were spatio-temporal non-stationary. The results of spatial analysis showed that the influence of urban population growth and farmland resource endowment on farmland conversion was declining from west to east in longitude direction, and reversed U-shaped curve in latitude direction. The influence of fixed assets investment and level of economic development was increasing from west to east in longitude direction, and U-shaped curve in latitude direction. The influence of industrial structure was increasing from west to east in longitude direction, and declining from north to south in latitude direction. From the perspective of temporal evolution, the coefficients of urban population growth, fixed assets investment and level of economic development had a downward trend, while coefficients of farmland resource endowment tended to increase. Coefficients of industrial structure had been reduced in some provinces.【Conclusion】(1) OPGT was an organic whole, each part was mutually tested and complementary, which could describe the spatio-temporal effect of factors in more detail. (2) In terms of the overall action intensity of the factors, the largest elastic coefficient was industrial structure, followed by level of economic development, fixed asset investment and farmland resource endowment, and the smallest was urban population growth. (3) In terms of the spatial characteristics of factor intensities, the influence of urban population growth and farmland resource endowment on farmland conversion was declining from Western China to Eastern China, while fixed assets investment, level of economic development and industrial structure increasing. (4) From the perspective of temporal evolution, the influence of urban population growth, fixed assets investment and level of economic development on farmland conversion had a downward trend. The relationship between farmland resource endowment and farmland conversion tended to strengthen. Although the influence of industrial structure had been reduced in some provinces, its degree of overall influence was still relatively high.

Key words: farmland conversion, integrated model, factors, temporal and spatial characteristics

Fig. 1

The overall procedure of OPGT"

Table 1

Descriptive statistics of the data"

变量
Variable
最小值
Minimum
最大值
Maximum
均值
Mean
标准差
Standard deviation
方差
Variance
Non_agr (hm2) 2.60 23872.92 6724.08 4826.32 23293353.33
Urb_popu (×104) -60.00 487.00 69.31 61.49 3781.28
Fixed_ass (×108 yuan) 78.86 49935.93 9556.29 8928.17 79712305.52
Economy (yuan/people) 5750.00 57310.00 22779.46 11648.92 135697256.59
Arable (×103 hm2) 187.60 15865.90 4255.16 3125.47 9768536.21
Indu_struc (%) 0.70 0.99 0.89 0.06 0.003

Table 2

Estimated results of the OLS regression model of cultivated land non-agricultural-transformation"

(6-a)
lnNon_agr
(6-b)
lnNon_agr
(6-c)
lnNon_agr
(6-d)
lnNon_agr
lnUrb_popu 0.474***(0.0552) 0.294***(0.0516) 0.401***(0.0527) 0.358***(0.0530)
lnFixed_ass 0.357***(0.0515) 0.742***(0.0598) 0.277**(0.0997) 0.314**(0.0983)
lnEconomy -0.878***(0.0900) -0.128(0.158) -0.358*(0.167)
lnArable 0.393***(0.0689) 0.414***(0.0678)
lnIndu_struc 2.919***(0.810)
C 3.500***(0.350) 7.899***(0.544) 2.379*(1.103) -9.199**(3.389)
R2 0.535 0.647 0.681 0.695
Adjusted. R2 0.532 0.643 0.677 0.689

Table 3

The estimated results of fixed effect model of cultivated land non-agricultural-transformation"

(7-a)
lnNon_agr
(7-b)
lnNon_agr
(7-c)
lnNon_agr
(7-d)
lnNon_agr
lnUrb_popu 0.235**(0.0721) 0.175*(0.0729) 0.173*(0.0716) 0.167*(0.0719)
lnFixed_ass 0.0505(0.0431) -0.217*(0.0880) -0.253**(0.0875) -0.239**(0.0887)
lnEconomy 1.454***(0.420) 1.438***(0.421) 1.593***(0.449)
lnArable 1.577***(0.443) 1.570***(0.443)
lnIndu_struc -2.728(2.758)
C 7.076***(0.424) -4.798(3.456) -16.86***(4.786) -6.207(11.79)
R2 0.048 0.089 0.129 0.132
Adjusted. R2 -0.063 -0.022 0.019 0.019

Table 4

Test results of the GWR and GTWR model of cultivated land non-agricultural-transformation"

变量
Variables
GWR GTWR
均值Mean 标准误Standard error 均值Mean 标准误Standard error
lnUrb_popu 0.3119*** 0.0640 0.14491*** 0.0094
lnFixed_ass 0.2397*** 0.0723 0.66776*** 0.0151
lnEconomy -0.5029*** 0.1118 -0.51308*** 0.0205
lnArable 0.3487*** 0.0587 0.27513*** 0.0128
lnIndu_struc 4.5003*** 1.0738 2.33906*** 0.0893
R2=0.785 R2=0.858

Table 5

The estimated results of GWR of cultivated land non-agricultural-transformation"

省(地区)Province (Region) lnUrb_popu lnFixed_ass lnEconomy lnArable lnIndu_struc
北京 Beijing 0.472 0.064 -0.355 0.619 7.164
天津Tianjin 0.460 -0.053 -0.153 0.707 6.569
河北Hebei 0.531 -0.022 -0.206 0.648 6.344
山西Shanxi 0.439 -0.113 0.215 0.658 0.821
内蒙古Inner Mongolia 0.272 0.316 -0.709 0.439 6.364
辽宁Liaoning 0.103 0.373 -0.920 0.626 11.803
吉林Jilin 0.058 0.633 -0.978 0.380 7.285
黑龙江Heilongjiang 0.048 0.694 -0.972 0.303 5.507
上海Shanghai 0.059 0.021 -1.026 0.733 17.048
江苏Jiangsu 0.025 0.274 -1.668 0.676 22.710
浙江Zhejiang 0.069 -0.191 -0.503 0.830 13.625
安徽Anhui 0.037 -0.074 -0.623 0.780 13.813
福建Fujian 0.001 -0.472 0.624 0.816 2.289
江西Jiangxi -0.020 -0.287 0.385 0.640 2.498
山东Shandong 0.186 -0.212 0.210 0.826 3.223
河南Henan 0.094 0.155 0.038 0.501 -2.134
湖北Hubei 0.096 0.558 -0.670 0.044 -2.950
湖南Hunan 0.096 0.540 -0.626 0.025 -1.707
广东Guangdong 0.044 0.841 -1.417 0.006 3.280
广西Guangxi 0.082 1.002 -1.463 0.035 1.511
海南Hainan 0.056 0.956 -1.425 0.042 2.208
重庆Chongqing 0.245 0.603 -0.816 0.026 0.118
四川Sichuan 0.474 0.476 -0.895 0.027 3.078
贵州Guizhou 0.123 0.673 -0.874 0.016 0.746
云南Yunnan 0.199 0.711 -1.153 0.024 3.159
西藏Tibet 1.237 -0.197 0.108 0.109 -1.318
陕西Shaanxi 0.422 0.360 -0.374 0.016 -1.227
甘肃Gansu 0.847 0.041 -0.045 -0.004 3.761
青海Qinghai 1.256 -0.248 0.146 0.053 3.327
宁夏Ningxia 0.713 0.080 0.128 -0.064 2.989
新疆Xinjiang 0.936 -0.065 0.409 0.249 -2.379

Table 6

Statistical value of GWR coefficients"

解释变量
Explanatory variables
最大值
Maximum
最小值
Minimum
标准差
Standard deviation
均值
Average
绝对值的均值
Average absolute value
lnUrb_popu 1.256 -0.020 0.349 0.312 0.313
lnFixed_ass 1.002 -0.472 0.286 0.240 0.365
lnEconomy 0.624 -1.668 0.455 -0.503 0.649
lnArable 0.830 -0.064 0.316 0.348 0.352
lnIndu_struc 22.710 -2.950 5.217 4.501 5.257

Table 7

The estimated results of GTWR of cultivated land non-agricultural-transformation (2006, 2010, 2015)"

省(地区)
Province (Region)
lnUrb_popu lnFixed_ass lnEconomy lnArable lnIndu_struc
2006 2010 2015 2006 2010 2015 2006 2010 2015 2006 2010 2015 2006 2010 2015
北京Beijing 0.15 0.07 -0.10 1.06 0.78 0.78 -0.89 -0.83 -0.58 0.01 0.21 0.48 2.97 3.25 3.42
天津Tianjin 0.16 0.06 -0.10 1.06 0.77 0.79 -0.88 -0.81 -0.58 0.01 0.21 0.47 2.99 3.19 3.29
河北Hebei 0.15 0.07 -0.10 1.06 0.77 0.77 -0.88 -0.82 -0.57 0.01 0.21 0.48 2.98 3.11 3.39
山西Shanxi 0.14 0.09 -0.05 1.05 0.79 0.71 -0.84 -0.75 -0.50 0.01 0.21 0.50 2.80 2.29 3.39
内蒙古Inner Mongolia 0.16 0.07 -0.07 1.04 0.86 0.72 -0.91 -0.92 -0.50 0.01 0.19 0.52 2.94 3.39 3.49
辽宁Liaoning 0.17 0.04 -0.13 1.08 0.78 0.87 -0.90 -0.83 -0.61 0.01 0.21 0.43 2.87 3.46 2.85
吉林Jilin 0.16 0.03 -0.14 1.11 0.78 0.88 -0.90 -0.80 -0.60 0.00 0.23 0.42 2.48 3.58 2.46
黑龙江Heilongjiang 0.18 0.03 -0.14 1.13 0.79 0.87 -0.90 -0.85 -0.55 -0.01 0.25 0.44 2.01 4.12 2.09
上海Shanghai 0.10 0.05 -0.12 1.18 0.69 0.93 -0.83 -0.72 -0.63 0.01 0.21 0.30 3.14 2.91 2.23
江苏Jiangsu 0.12 0.06 -0.12 1.14 0.72 0.91 -0.83 -0.73 -0.62 0.02 0.21 0.34 3.12 2.76 2.31
浙江Zhejiang 0.06 0.05 -0.11 1.22 0.68 0.94 -0.82 -0.66 -0.63 0.02 0.22 0.29 3.11 2.67 2.15
安徽Anhui 0.11 0.06 -0.11 1.14 0.73 0.89 -0.83 -0.70 -0.60 0.02 0.21 0.35 3.08 2.31 2.21
福建Fujian 0.02 0.05 -0.09 1.25 0.69 0.94 -0.85 -0.64 -0.64 0.02 0.22 0.26 3.02 1.92 1.93
江西Jiangxi 0.05 0.07 -0.08 1.19 0.72 0.90 -0.84 -0.65 -0.62 0.02 0.21 0.30 3.02 1.68 2.01
山东Shandong 0.15 0.07 -0.12 1.09 0.75 0.86 -0.86 -0.77 -0.61 0.01 0.20 0.41 3.06 2.77 2.77
河南Henan 0.12 0.08 -0.08 1.09 0.77 0.81 -0.82 -0.72 -0.55 0.01 0.20 0.42 2.90 1.95 2.50
湖北Hubei 0.09 0.09 -0.05 1.12 0.78 0.80 -0.82 -0.69 -0.51 0.01 0.21 0.39 2.87 1.46 2.12
湖南Hunan 0.07 0.09 -0.03 1.15 0.78 0.82 -0.84 -0.69 -0.53 0.02 0.21 0.35 2.95 1.16 1.96
广东Guangdong 0.01 0.06 -0.04 1.23 0.75 0.87 -0.91 -0.68 -0.57 0.01 0.22 0.29 2.96 1.02 1.92
广西Guangxi 0.08 0.09 0.03 1.13 0.82 0.76 -0.87 -0.68 -0.44 0.02 0.24 0.36 3.04 0.44 1.76
海南Hainan 0.04 0.07 0.02 1.22 0.81 0.80 -0.90 -0.64 -0.46 0.02 0.26 0.30 3.03 0.29 1.72
重庆Chongqing 0.11 0.13 0.03 1.06 0.83 0.68 -0.79 -0.72 -0.34 0.01 0.22 0.46 2.80 1.08 2.08
四川Sichuan 0.16 0.21 0.12 0.95 0.83 0.53 -0.74 -0.59 -0.02 0.01 0.29 0.56 2.71 0.59 1.68
贵州Guizhou 0.12 0.13 0.05 1.07 0.84 0.68 -0.81 -0.72 -0.36 0.01 0.24 0.43 2.97 0.59 1.91
云南Yunnan 0.18 0.21 0.17 0.94 0.87 0.55 -0.82 -0.52 0.04 0.01 0.35 0.51 3.32 -0.99 1.08
西藏Tibet 0.42 0.74 0.30 0.48 0.21 0.19 -0.61 0.24 0.66 -0.02 0.82 0.82 2.90 -0.23 1.10
陕西Shaanxi 0.12 0.12 0.00 1.04 0.78 0.64 -0.78 -0.69 -0.34 0.01 0.24 0.52 2.57 1.89 2.76
甘肃Gansu 0.14 0.24 0.16 0.95 0.74 0.39 -0.67 -0.51 0.09 0.00 0.34 0.68 2.04 1.94 2.85
青海Qinghai 0.22 0.40 0.28 0.80 0.62 0.22 -0.60 -0.30 0.41 -0.01 0.46 0.77 1.99 1.46 2.21
宁夏Ningxia 0.13 0.15 0.06 1.00 0.75 0.50 -0.75 -0.64 -0.19 0.01 0.28 0.61 2.41 2.24 3.24
新疆Xinjiang 0.24 0.60 0.31 0.70 0.41 0.02 -0.69 0.35 0.74 -0.04 0.74 0.94 3.06 0.07 1.16

Fig. 2

Spatial variation of elasticity coefficient of explanatory variables"

[1] 赵文武 . 世界主要国家耕地动态变化及其影响因素. 生态学报, 2012,32(20):6452-6462.
doi: 10.5846/stxb201203080314
ZHAO W W . Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecologica Sinica, 2012,32(20):6452-6462. (in Chinese)
doi: 10.5846/stxb201203080314
[2] 中华人民共和国国土资源部. 中国国土资源统计年鉴(2007-2016). 北京: 地质出版社, 2007-2016.
Ministry of Land and Resources of PRC. The China Land and Resources Statistical Yearbook 2007-2016. Beijing: Geology Publishing House, 2007-2016. (in Chinese)
[3] 何英彬, 陈佑启, 姚艳敏, 石淑芹, 李志斌, 万利 . 东北三省耕地非农化时空特征及其与粮食生产能力的关系. 资源科学, 2009,31(2):295-302.
doi: 10.3321/j.issn:1007-7588.2009.02.017
HE Y B, CHEN Y Q, YAO Y M, SHI S Q, LI Z B, WAN L . Temporal and spatial characteristics analysis of relation between arable land non-agriculturalization and food productivity based on GIS technique. Resources Science, 2009,31(2):295-302. (in Chinese)
doi: 10.3321/j.issn:1007-7588.2009.02.017
[4] 程传兴, 高士亮, 张良悦 . 中国农地非农化与粮食安全. 经济学动态, 2014(7):87-96.
CHENG C X, GAO S L, ZHANG Y Y . Farmland non- agriculturalization and food security in China.Economic Perspectives, 2014(7):87-96. (in Chinese)
[5] 赵爱栋, 彭冲, 许实, 曾薇, 马贤磊 . 生态安全约束下耕地潜在转换及其对粮食生产的影响——以东北地区为例. 中国人口·资源与环境, 2017,27(11) : 124-131.
ZHAO A D, PENG C, XU S, ZENG W, MA X L . Impact of farmland conversion grain output under the ecological constraint: based in the Northeast of China. China Population, Resources and Environment, 2017, 27(11):124-131. (in Chinese)
[6] 张基凯, 吴群, 黄秀欣 . 耕地非农化对经济增长贡献的区域差异研究——基于山东省17个地级市面板数据的分析. 资源科学, 2010,32(5):959-969.
ZHANG J K, WU Q, HUANG X X . A study on regional differences in contribution of cultivated land conversion to economic growth based on panel data analysis of 17 cities in Shandong Province. Resources Science, 2010, 32(5):959-969. (in Chinese)
[7] 望晓东, 魏玲, 江华 . 耕地非农化与经济增长、城市化的互动关系实证研究——基于广东省时间序列数据的分析. 农村经济, 2013(7):32-36.
WANG X D, WEI L, JIANG H . Empirical study on the interactive relationship between cultivated land conversion and economic growth and urbanization——based on the analysis of time series data of Guangdong Province.Rural Economy, 2013(7):32-36. (in Chinese)
[8] 沈孝强, 吴次芳, 方明 . 浙江省产业、人口与土地非农化的协调性分析. 中国人口·资源与环境, 2014,24(9):129-134.
doi: 10.3969/j.issn.1002-2104.2014.09.018
SHEN X Q, WU C F, FANG M . Coordination of industry, population and land deagriculturalization during the rapid process of urbanization in Zhejiang Province. China Population, Resources and Environment, 2014,24(9):129-134. (in Chinese)
doi: 10.3969/j.issn.1002-2104.2014.09.018
[9] 杨振, 刘会敏, 余斌 . 土地非农化生态价值损失估算. 中国人口·资源与环境, 2013,23(10):146-150.
doi: 10.3969/j.issn.1002-2104.2013.10.021
YANG Z, LIU H M, YU B . Estimation on loss of ecological value in the process of land’s non-agriculturalization. China Population, Resources and Environment, 2013,23(10):146-150. (in Chinese)
doi: 10.3969/j.issn.1002-2104.2013.10.021
[10] 李国敏, 卢珂, 黄烈佳 . 主体权益下耕地非农化价值损失补偿的反思与重构. 中国人口·资源与环境, 2017,27(12) : 137-145.
LI G M, LU K, HUANG L J . Reflection and reconstruction of cultivated land conversion value loss compensation under the subject rights. China Population, Resources and Environment, 2017, 27(12):137-145. (in Chinese)
[11] 谭荣, 曲福田 . 中国农地非农化与农地资源保护:从两难到双赢. 管理世界, 2006(12):50-66.
TAN R, QU F T . Farmland conversion and farmland resources protection in china: From dilemma to win-win.Management World, 2006(12):50-66. (in Chinese)
[12] 叶宇航 . 我国耕地非农化的驱动因素研究. 科学决策, 2015(9):33-50.
doi: 10.3773/j.issn.1006-4885.2015.09.033
YE Y H . The analysis of drivers of our country's cultivated land conversion.Scientific Decision-Making, 2015(9):33-50. (in Chinese)
doi: 10.3773/j.issn.1006-4885.2015.09.033
[13] 许恒周, 吴冠岑, 郭玉燕 . 耕地非农化与中国经济增长质量的库兹涅茨曲线假说及验证——基于空间计量经济模型的实证分析. 中国土地科学, 2014,28(1):75-81.
doi: 10.3969/j.issn.1001-8158.2014.01.010
XU H Z, WU G C, GUO Y Y . A hypothesis on the Kuznets Curve relation between farmland conversion and quality of economic growth in China: An empirical analysis of spatial econometric model.China Land Sciences, 2014, 28(1):75-81. (in Chinese)
doi: 10.3969/j.issn.1001-8158.2014.01.010
[14] QIU F, LALIBERTÉ L, SWALLOW B . Impacts of fragmentation and neighbor influences on farmland conversion: A case study of the Edmonton-Calgary Corridor, Canada. Land Use Policy, 2015, 48(1):482-494.
doi: 10.1016/j.landusepol.2015.06.024
[15] 张光宏, 崔许锋 . 耕地资源非农化驱动机制及其区域差异性. 中国农业科学, 2015,48(8):1632-1640.
doi: 10.3864/j.issn.0578-1752.2015.08.18
ZHANG G H, CUI X F . Driving mechanism and regional differentiation of cultivated land non-agricultural-transformation. Scientia Agricultura Sinica, 2015,48(8):1632-1640. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.08.18
[16] USTAOGLU E, WILLIAMS B . Determinants of urban expansion and agricultural land conversion in 25 EU countries. Environmental Management, 2017, 60(4):717-746.
doi: 10.1007/s00267-017-0908-2 pmid: 28685244
[17] 宋敏, 王登娜 . 省域农地城市流转规模及其影响因素作用的空间异质性研究. 中国人口·资源与环境, 2018,28(1):54-62.
SONG M, WANG D N . Spatial heterogeneity of provincial rural-urban land conversion scale and effects of its influential factors. China Population, Resources and Environment, 2018, 28(1):54-62. (in Chinese)
[18] STOPP G H . The destruction of American agricultural land. Geography, 1984, 69(1):64-66.
[19] 曲福田, 冯淑怡, 诸培新, 陈志刚 . 制度安排、价格机制与农地非农化研究. 经济学(季刊), 2004,4(1):229-248.
QU F T, FENG S Y, ZHU P X, CHEN Z G . Institutional arrangements, price system and farmland conversion. China Economic Quarterly, 2004,4(1):229-248. (in Chinese)
[20] 钱忠好, 牟燕 . 中国农地非农化市场化改革为何举步维艰——基于地方政府土地财政依赖视角的分析. 农业技术经济, 2017(1):18-27.
QIAN Z H, MOU Y . Why does the reform of non-agriculturalization of agricultural land in China make it difficult?——Based on the analysis of local government's dependence on land and finance. Journal of Agrotechnical Economics, 2017(1):18-27. (in Chinese)
[21] 王春秋, 徐长生 . 山东省建设占用耕地与经济增长的脱耦分析. 中国人口·资源与环境, 2012,22(8):128-132.
doi: 10.3969/j.issn.1002-2104.2012.08.020
WANG C Q, XU C S . Decoupling evaluation between cultivated land occupation and economic growth in Shandong Province. China Population, Resources and Environment, 2012,22(8):128-132. (in Chinese)
doi: 10.3969/j.issn.1002-2104.2012.08.020
[22] 马才学, 赵利利, 柯新利 . 湖北省耕地非农化压力的时空演变格局. 长江流域资源与环境, 2016,25(1):71-78.
doi: 10.11870/cjlyzyyhj201601009
MA C X, ZHAO L L, KE X L . Temporal spatial variation of the pressure of cropland non-argiculturalization in Hubei Province. Resources and Environment in the Yangtze Basin, 2016,25(1):71-78. (in Chinese)
doi: 10.11870/cjlyzyyhj201601009
[23] 张孝宇, 张安录 . 武汉市耕地非农化的空间自相关分析. 长江流域资源与环境, 2015,24(5):781-788.
doi: 10.11870/cjlyzyyhj201505010
ZHANG X Y, ZHANG A L . Small-Scale spatial patterns of farmland conversion based on autocorrelation analysis in Wuhan City. Resources and Environment in the Yangtze Basin, 2015,24(5):781-788. (in Chinese)
doi: 10.11870/cjlyzyyhj201505010
[24] 崔许锋, 张光宏, 李飞 . 城镇化土地集约利用潜力空间分异研究—基于土地城镇化的“人口-经济”二元驱动视角. 华东经济管理, 2016,30(10):62-67.
doi: 10.3969/j.issn.1007-5097.2016.10.010
CUI X F, ZHANG G H, LI F . A study on spatial differentiation of land intensive use potential: Based on the perspective of “Population- Economy” dual driving mode of land urbanization. East China Economic Management, 2016,30(10):62-67. (in Chinese)
doi: 10.3969/j.issn.1007-5097.2016.10.010
[25] WU B, LI R R, HUANG B . A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 2014,28(5):1186-1204.
doi: 10.1080/13658816.2013.878463
[26] CHU H J, HUANG B, LIN C Y . Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmospheric Environment, 2015,102:176-182.
doi: 10.1016/j.atmosenv.2014.11.062
[27] 王新刚, 孔云峰 . 基于时空窗口改进的时空加权回归分析——以湖北省黄石市住房价格为例. 地理科学, 2015,35(5):615-621.
WANG X G, KONG Y F . An improved spatiotemporally weighted regression analysis based on spatiotemporal windows: A case study of housing price of Huangshi City, Hubei Province. Scientia Geographica Sinica, 2015,35(5):615-621. (in Chinese)
[28] MORAN P A P . Notes on continuous stochastic phenomena. Biometrika, 1950,37(1/2):17-23.
doi: 10.1093/biomet/37.1-2.17
[29] LEVERS C, SCHNEIDER M, PRISHCHEPOV A V, ESTEL S, KUEMMERLE T . Spatial variation in determinants of agricultural land abandonment in Europe. Science of the Total Environment, 2018,644:95-111.
doi: 10.1016/j.scitotenv.2018.06.326
[30] 刘艳清, 葛京凤, 李灿, 刘欣 . 基于空间自相关的城市住宅地价空间分异规律研究——以石家庄市城区为例. 干旱区资源与环境, 2018,32(12):55-62.
LIU Y Q, GE J F, LI C, LIU X . Spatial differentiation characteristics of urban residential land prices of Shijiazhuang City based on spatial autocorrelation. Journal of Arid Land Resources and Environment, 2018,32(12):55-62. (in Chinese)
[31] 吴文佳, 张晓平, 李媛芳 . 北京市景观可达性与住宅价格空间关联. 地理科学进展, 2014,33(4):488-498.
doi: 10.11820/dlkxjz.2014.04.006
WU W J, ZHANG X P, LI Y F . Spatial correlation analysis of landscape accessibility and residential housing price in Beijing. Progress in Geography, 2014,33(4):488-498. (in Chinese)
doi: 10.11820/dlkxjz.2014.04.006
[32] TOBLER W R . A computer movie simulating urban growth in the Detroit region. Economic geography, 1970,46(Suppl.):234-240.
doi: 10.2307/143141
[1] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[2] YU WeiBao,LI Nan,KOU YiHong,CAO XinYou,SI JiSheng,HAN ShouWei,LI HaoSheng,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[3] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[4] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[5] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[6] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[7] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[8] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[9] GuangZhi ZHANG,MingYan WANG,Yi LUO,ShiHang XU,ShunDong HE,ShangJin CUI. The Zoonotic Bacterium-Helicobacter suis and Its Research Progress [J]. Scientia Agricultura Sinica, 2020, 53(6): 1278-1286.
[10] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[11] LIU XiaoYu,ZHANG DouDou,JIAO JinYu,CHEN GuoQing,LI Yong. Analysis on Limiting Factors of Efficient Utilization of Winter Wheat and Summer Maize Farmland Resources [J]. Scientia Agricultura Sinica, 2020, 53(19): 3900-3914.
[12] YANG Zhe,YU ShengNan,GAO JuLin,TIAN Tian,SUN JiYing,WEI ShuLi,HU ShuPing,LI RongFa,LI CongFeng,WANG ZhiGang. Quantitative Evaluation of the Contribution of Main Management Factors to Grain Yield of Spring Maize in North China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3024-3035.
[13] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[14] WEI QiHang,REN YanFang,HE JunYu,LI ZhaoJun. Research Progress of Microbial Deodorization in Livestock and Poultry Wastes Composting [J]. Scientia Agricultura Sinica, 2020, 53(15): 3134-3145.
[15] ZHU XiaoYu,XU DaWei,XIN XiaoPing,SHEN BeiBei,DING Lei,WANG Xu,CHEN BaoRui,YAN RuiRui. The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015 [J]. Scientia Agricultura Sinica, 2020, 53(13): 2715-2727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!