Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4264-4276.doi: 10.3864/j.issn.0578-1752.2018.22.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Planting Pattern and Density on Population Structure and Yield of Sorghum

XIAO JiBing(),LIU Zhi(),KONG FanXin,XIN ZongXu,WU HongSheng   

  1. Institute of Water and Soil Conservation in Liaoning, Chaoyang 122000, Liaoning
  • Received:2018-06-12 Accepted:2018-07-16 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】 The combination of planting pattern and planting density was one of the effective ways to increase the utilization rate of light energy and to increase the yield of crops in dryland farming area, which was of great significance in dryland agricultural production. The effects of different planting densities and planting modes on the structure of sorghum canopy were studied to provide a theoretical basis for further excavating the yield potential of sorghum in the semi-arid region of western Liaoning. 【Method】 The brewed sorghum variety Liaoza 19 was used as the experimental material. Two factors split plot design was used to examine the effects of different treatments on photosynthetic characteristics of the population and yield by analyzing plant shape index, photosynthetic physiological indexes, and aboveground biomass. The main area was planted with 60 cm equal row spacing (P1) and 80 cm+40 cm wide-narrow row planting (P2), and the split area was planting density with 75 000 plants/hm 2(D1), 105 000 plants/hm 2(D2), 135 000 plants/hm 2(D3) and 165 000 plants/hm 2(D4). The experiment was repeated three times. 【Result】 In the two years, grain yield of sorghum was in turn D3>D2>D4>D1 from big to small under the same planting pattern. The average 2-year yield of P2D2 was 5.02% higher than that of P1D2, and that of P2D3 was 6.96% higher than that of P1D3, and that of P2D1 was 0.27% lower than that of P1D1, respectively. The yield of P2D4 was 2.55% lower than that of P1D4 in 2017. The yield of P2D3, which was the highest in all treatments, was 10 267.14 kg·hm -2. In accordance with the increase of planting density, the plant height, population leaf area index and leaf orientation value showed an increasing trend, while stem diameter, stem diameter coefficient, leaf area per plant, angle between leaf and stem, light transmittance, SPAD value and net photosynthetic rate decreased. The wide-narrow row planting had the advantages in the aspects of stem diameter coefficient, group leaf area index, light transmittance, net photosynthetic rate, SPAD value compared with equidistant row planting under D2 and D3. P2D2 increased by 2.80%, 3.17%, 16.33% compared with P1D2 and P2D3 increased by 9.29%, 7.27%, 17.57% compared with P1D3 respectively in the aspects of mean stem diameter coefficient, mean population leaf area index and mean net photosynthetic rate in the two years. In the stage of flowering and milking, P2D2 increased by 22.55%, 15.81% compared with P1D2, respectively, and P2D3 increased by 37.45%, 102.09% compared with P1D3 in the aspect of mean light transmittance at the bottom, respectively, and P2D2 increased by 38.72%, 8.16% compared with P1D2, respectively, and P2D3 increased by 56.59%, 93.60% compared with P1D3 in the aspect of mean light transmittance in the middle of the canopy, respectively, in the two years. In the stage of flowering and milking, P2D2 increased by 6.46%, 5.41% compared with P1D2, respectively, and P2D3 increased by 8.75%, 5.46% compared with P1D3 on two years' average SPAD value, respectively. Under the density of D2 and D3, the upper leave of the wide-narrow row planting was relatively straight and leaf area was lesser, which could improve the light receiving condition of the middle and lower leaves, the lower blade was relatively flat and leaf area was larger, which could reduce the loss of light leakage and improve the utilization ratio of light energy compared with equidistant row planting in the two years. 【Conclusion】Appropriate increase of planting density was the key to increase sorghum yield. Under optimum planting density, wide-narrow row planting, which was an important way to realize the synergistic gain and yield enhancement of crop population structure and plant individual function, could effectively improve canopy light transmittance, increase population leaf area index, expand photosynthetic area, and improve the photosynthetic performance of the leaves, especially the middle and lower leaves.

Key words: planting density, planting pattern, sorghum, canopy structure, yield

Table 1

Yield and yield components in different populations of sorghum"

年份
Year
种植方式
Planting pattern
种植密度
Planting density
穗粒数
Kernels per panicle
千粒重
1000-kernel weight (g)
籽粒产量
Yield (kg·hm-2)
2016 P1 D1 3606.67±323.60a 29.40±1.23a 7542.75±426.00b
D2 2802.20±320.72b 27.36±1.24b 8016.40±688.65b
D3 2751.23±457.81b 25.49±1.11c 9625.95±661.55a
P2 D1 3053.80±477.59a 30.66±1.17a 6996.75±841.78c
D2 2954.26±321.70a 27.73±2.09b 8558.20±424.98b
D3 2798.21±143.08a 26.37±0.95b 10226.25±558.26a
2017 P1 D1 3877.89±314.24a 31.23±1.65a 7652.06±708.37b
D2 3095.85±205.82b 30.77±2.04a 9530.32±402.64a
D3 2416.57±301.10c 30.33±1.69a 9572.47±290.35a
D4 2193.38±270.08c 27.18±0.62b 9313.73±180.34a
P2 D1 3926.45±151.60a 30.85±1.23a 8156.76±345.64c
D2 3146.02±310.18b 29.43±1.13a 9868.54±763.05ab
D3 2604.21±186.15c 29.95±1.28a 10308.02±1034.85a
D4 2128.65±206.24d 26.27±1.54b 9076.39±412.16b

Fig. 1

Effect of different planting pattern and density on sorghum biomass in 2017"

Table 2

Effect of different planting pattern and density on growth of sorghum"

年份
Year
种植方式
Planting
pattern
种植密度
Planting
density
株高
Plant height
(cm)
茎粗
Stem diameter
(cm)
茎粗系数
Stem diameter
coefficient (%)
叶面积Leaf area (cm2)
上叶
Upper leaf
中叶
Middle leaf
下叶
Lower leaf
平均
Average
2016 P1 D1 182.0±4.24b 2.60±0.17a 1.43±0.11a 428.67±9.19a 643.83±20.80a 727.42±21.13a 599.97a
D2 196.2±2.06a 2.22±0.07b 1.13±0.04b 380.08±20.36b 626.54±10.32a 701.88±25.25b 569.50b
D3 203.5±2.75a 2.02±0.12b 0.99±0.05b 335.88±16.70c 626.96±8.30a 685.30±12.63b 549.38c
P2 D1 181.2±4.00b 2.72±0.22a 1.51±0.08a 360.79±29.49a 698.34±16.04a 712.75±23.38a 590.63a
D2 195.0±4.81a 2.27±0.07b 1.17±0.05b 360.71±24.64a 684.59±11.12a 714.34±22.61a 583.21a
D3 203.0±4.19a 2.17±0.13b 1.07±0.08b 318.38±14.67b 646.46±22.41b 690.58±17.56b 545.14b
2017 P1 D1 185.4±6.40c 2.20±0.06a 1.20±0.09a 463.71±32.56a 726.86±16.82a 711.55±27.50a 634.04a
D2 200.5±5.40b 1.99±0.03b 1.01±0.06b 429.58±31.67b 697.48±13.94b 653.39±17.06b 593.48b
D3 211.5±1.60a 1.76±0.03c 0.84±0.01c 377.98±26.47c 646.90±22.31c 577.32±21.64c 534.07c
D4 209.0±5.50a 1.65±0.09c 0.79±0.02c 395.12±12.60c 656.66±25.86c 570.30±17.23c 540.69c
P2 D1 182.7±5.70c 2.20±0.11a 1.21±0.02a 439.24±5.68a 774.24±26.61a 743.38±19.56a 652.28a
D2 192.5±5.30b 1.98±0.14b 1.03±0.10b 421.44±19.73ab 699.26±13.07b 685.58±16.70b 602.09b
D3 198.3±1.90ab 1.84±0.11bc 0.93±0.06bc 368.60±7.40c 689.25±15.47b 669.39±13.32b 575.74c
D4 204.9±5.70a 1.73±0.13c 0.85±0.08c 393.08 ±14.22bc 664.59±11.92c 608.40±14.17c 555.36d

Table 3

Plant character of sorghum under different planting pattern and density"

年份
Year
种植方式
Planting
pattern
种植密度
Planting
density
茎叶夹角Stem-leaf angle (°) 叶向值Leaf orientation value
上叶
Upper leaf
中叶
Middle leaf
下叶
Lower leaf
平均
Average
上叶
Upper leaf
中叶
Middle leaf
下叶
Lower leaf
平均
Average
2016 P1 D1 53.00±3.84a 34.22±3.75a 27.78±0.96a 38.33a 16.24±2.10a 28.88±3.05a 27.67±3.50b 24.27b
D2 46.55±1.54a 31.44±2.50ab 26.78±4.29a 34.92ab 17.56±4.83a 30.26±4.12a 35.33±2.85a 27.72a
D3 45.78±2.80a 27.78±4.81b 24.11±3.89a 32.56b 19.49±3.57a 32.00±2.67a 36.88±1.74a 29.46a
P2 D1 43.45±1.58a 34.89±2.04a 33.78±4.22a 37.37a 20.56±1.35a 27.70±4.43b 30.03±4.17a 26.10a
D2 42.78±1.92a 30.89±1.35ab 30.56±5.85a 34.74a 20.69±1.69a 34.66±3.52a 32.66±1.23a 29.34a
D3 42.56±3.37a 27.78±4.19b 29.22±5.74a 33.18a 19.65±1.34a 33.32±2.08ab 33.25±2.76a 28.74a
2017 P1 D1 54.67±5.24a 32.67±6.33a 35.33±2.73a 40.89a 10.03±2.91a 22.23±2.97b 17.88±3.31b 16.72b
D2 55.11±6.55a 29.55±7.20ab 33.00±3.51ab 39.22a 10.98±3.08a 24.39±0.92ab 21.82±5.08ab 19.06ab
D3 52.11±7.90a 32.00±4.04a 29.45±2.67bc 37.85a 13.01±3.54a 23.25±3.50ab 24.10±2.30a 20.12a
D4 43.00±7.87b 27.11±1.35b 28.56±2.01c 32.89b 14.79±1.15a 27.86±2.78a 23.98±2.18a 22.21a
P2 D1 53.22±5.19a 29.98±2.11a 35.78±3.95a 39.66a 11.57±3.75b 16.61±1.45b 16.35±3.68b 14.84c
D2 46.22±4.88a 28.78±3.53a 35.00±2.85a 36.67a 16.08±4.94ab 23.19±4.70a 19.77±2.29ab 19.68b
D3 45.55±4.02a 28.33±2.00a 30.78±4.53b 34.89a 16.61±3.57ab 23.37±2.87a 20.23±2.41ab 20.07ab
D4 45.00±3.38a 28.45±1.95a 31.33±3.21ab 34.93a 20.95±4.03a 26.89±4.99a 24.70±2.72a 24.18a

Fig. 2

Effect of different planting pattern and density on LAI"

Fig. 3

Effect of different planting pattern and density on percent transmission of canopy"

Fig. 4

Effect of different planting pattern and density on SPAD"

Fig. 5

Effect of different planting pattern and density on net photosynthetic rate"

[1] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36(7):1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010,36(7):1226-1233. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01226
[2] 章家恩 . 作物群体结构的生态环境效应及其优化探讨. 生态科学, 2000,19(1):30-35.
doi: 10.3969/j.issn.1008-8873.2000.01.005
ZHANG J E . Discussion on the eco-environmental effects of crop community structure and its optimization. Ecologic Science, 2000,19(1):30-35. (in Chinese)
doi: 10.3969/j.issn.1008-8873.2000.01.005
[3] 齐华, 梁熠, 赵明, 王敬亚, 吴亚男, 刘明 . 栽培方式对玉米群体结构的调控效应. 华北农学报, 2010,25(3):134-139.
doi: 10.7668/hbnxb.2010.03.029
QI H, LIANG Y, ZHAO M, WANG J Y, WU Y N, LIU M . The effects of cultivation ways on population structure of maize. Acta Agriculturae Boreali-Sinica, 2010,25(3):134-139. (in Chinese)
doi: 10.7668/hbnxb.2010.03.029
[4] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞 . 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34(3):447-455.
doi: 10.3724/SP.J.1006.2008.00447
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P . Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008,34(3):447-455. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00447
[5] 郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺 . 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001,27(6):862-868.
doi: 10.3321/j.issn:0496-3490.2001.06.029
ZHENG H J, DONG S T, WANG K J, GUO Y Q, HU C H, ZHANG J W . Effects of ecological factors on maize (Zea mays L.) yield of different varieties and corresponding regulative measure. Acta Agronomica Sinica, 2001,27(6):862-868. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2001.06.029
[6] DONG S, HU C, YUE S . The characteristics of canopy photosynthesis of summer corn (Zea mays) and its relation with canopy structure and ecological conditions. Acta Phytoecologica Et Geobotanica Sinica, 1992,16(4):372-378.
[7] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞 . 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008,41(9):2624-2632.
LÜ L H, ZHAO M, ZHAO J R, TAO H B, WANG P . Canopy structure and photosvnthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008,41(9):2624-2632. (in Chinese)
[8] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉 . 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44(21):4367-4376.
doi: 10.3864/j.issn.0578-1752.2011.21.005
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H . Study on canopy structure and physiological characteristics of super-high yield spring maize, Scientia Agricultura Sinica, 2011,44(21):4367-4376. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.21.005
[9] SHARRATT B S, MCWILLIAMS D A . Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agronomy Journal, 2005,97(4):1129-1135.
doi: 10.2134/agronj2004.0292
[10] RETASÁNCHEZ D G, FOWLER J L . Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agronomy Journal, 2002,94(6):1317-1323.
doi: 10.2134/agronj2002.1317
[11] 李明, 李文雄 . 肥料和密度对寒地高产玉米源库性状及产量的调节作用. 中国农业科学, 2004,37(8):1130-1137.
doi: 10.3321/j.issn:0578-1752.2004.08.008
LI M, LI W X . Regulation of fertilizer and density on sink and source traits and yield of maize. Scientia Agricultura Sinica, 2004,37(8):1130-1137. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2004.08.008
[12] KONNO Y . Feedback regulation of constant leaf standing crop in Sasa tsuboiana grasslands. Ecological Research, 2001,16(3):459-469.
doi: 10.1046/j.1440-1703.2001.00421.x
[13] 刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉 . 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010,21(7):1737-1743.
LIU W, LÜ P, SU K, YANG J S, ZHANG J W, DONG S T, LIU P, SUN Q Q . Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chinese Journal of Applied Ecology, 2010,21(7):1737-1743. (in Chinese)
[14] WESTGATE M E, FORCELLA F, REICOSKY D C, SOMSEN J . Rapid canopy closure for maize production in the northern US corn belt: Radiation-use efficiency and grain yield. Field Crops Research, 1997,49(2/3):249-258.
doi: 10.1016/S0378-4290(96)01055-6
[15] ANDRADE F H, CALVIÑO P, CIRILO A, BARBIERI P . Yield responses to narrow rows depend on increased radiation interception. Agronomy Journal, 2002,94(5):975-980.
doi: 10.2134/agronj2002.0975
[16] 沈秀瑛, 戴俊英, 胡安畅, 顾慰连, 郑波 . 玉米群体冠层特征与光截获及产量关系的研究. 作物学报, 1993,19(3):246-252.
SHEN X Y, DAI J Y, HU A C, GU W L, ZHENG B . Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.). Acta Agronomica Sinica, 1993,19(3):246-252. (in Chinese)
[17] 杨利华, 张丽华, 张全国, 姚艳荣, 贾秀领, 马瑞崑 . 种植样式对高密度夏玉米产量和株高整齐度的影响. 玉米科学, 2006,14(6):122-124.
doi: 10.3969/j.issn.1005-0906.2006.06.032
YANG L H, ZHANG L H, ZHANG Q G, YAO Y R, JIA X L, MA R K . Effect of row spacing pattern on yield and plant height uniformity in highly-densed summer maize. Journal of Maize Sciences, 2006,14(6):122-124. (in Chinese)
doi: 10.3969/j.issn.1005-0906.2006.06.032
[18] LIU T, SONG F, LIU S, ZHU X . Canopy structure, light interception, and photosynthetic characteristics under different narrow-wide planting patterns in maize at silking stage. Spanish Journal of Agricultural Research, 2011,9(4):1249-1261.
doi: 10.5424/sjar/20110904-050-11
[19] 黄瑞冬, 高悦, 周宇飞, 吴奇, 张姣, 尚培培, 张壮, 高铭悦, 韩熠, 许文娟 . 矮秆高粱辽杂35光合特性与产量构成因素. 中国农业科学, 2017,50(5):822-829.
doi: 10.3864/j.issn.0578-1752.2017.05.005
HUANG R D, GAO Y, ZHOU Y F, WU Q, ZHANG J, SHANG P P, ZHANG Z, GAO M Y, HAN Y, XU W J . Photosynthetic characteristics and yield components of dwarf sorghum hybrid Liaoza 35. Scientia Agricultura Sinica, 2017,50(5):822-829. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.05.005
[20] 陆樟镳, 黄瑞冬, 魏保权, 张素萍, 周宇飞, 肖木辑, 许文娟 . 高粱不同群体类型植株冠层特性与物质生产. 沈阳农业大学学报, 2011,42(4):406-410.
LU Z B, HUANG R D, WEI B Q, ZHANG S P, ZHOU Y F, XIAO M J, XU W J . Canopy characteristics and matter production during filling stage in different populations of sorghum. Journal of Shenyang Agricultural University, 2011,42(4):406-410. (in Chinese)
[21] 杨楠, 丁玉川, 焦晓燕, 王劲松, 董二伟, 王立革, 武萍 . 种植密度对高粱群体生理指标、产量及其构成因素的影响. 农学学报, 2013,3(7):11-17.
doi: 10.3969/j.issn.1007-7774.2013.07.004
YANG N, DING Y C, JIAO X Y, WANG J S, DONG E W, WANG L G, WU P . Effects of plant density on population physiological indices, grain yield and yield component factors of sorghum. Journal of Agriculture, 2013,3(7):11-17. (in Chinese)
doi: 10.3969/j.issn.1007-7774.2013.07.004
[22] 梁熠, 齐华, 王敬亚 . 行距配置对春玉米群体冠层环境与光合特性的影响. 西北农业学报, 2014,23(8):66-72.
doi: 10.7606/j.issn.1004-1389.2014.08.011
LIANG Y, QI H, WANG J Y . Effects of different row spacing on ecological environment and photosynthetic characteristics of spring maize populations. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(8):66-72. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2014.08.011
[23] 李光, 白文斌, 曹昌林, 史丽娟, 张建华, 彭之东, 范娜 . 不同种植模式对矮秆高粱‘晋杂34号’光合特性和产量的影响. 农学学报, 2015,5(10):1-5.
LI G, BAI W B, CAO C L, SHI L J, ZHANG J H, PENG Z D, FAN N . Effects of photosynthetic characteristics and yield of ‘Jinza No.34’ with different plant patterns. Journal of Agriculture, 2015,5(10):1-5. (in Chinese)
[24] 魏珊珊, 王祥宇, 董树亭 . 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014,25(2):441-450.
WEI S S, WANG X Y, DONG S T . Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology, 2014,25(2):441-450. (in Chinese)
[25] 赵甘霖, 丁国祥, 刘天朋, 倪先林, 陈国民, 胡烔凌, 汪小楷 . 宽窄行和等行距栽培条件下高粱种植密度与产量的关系研究. 农学学报, 2013,3(8):11-13.
ZHAO G L, DING G X, LIU T P, NI X L, CHEN G M, HU J L, WANG X K . Studied on relationship on the sorghum density and yield under different width row space with narrow row space and same row space culture. Journal of Agriculture, 2013,3(8):11-13. (in Chinese)
[26] 张永科, 孙茂, 张雪君, 吴金平, 何仲阳, 马永平 . 玉米密植和营养改良之研究:Ⅱ.行距对玉米产量和营养的效应. 玉米科学, 2006,14(2):108-111.
doi: 10.3969/j.issn.1005-0906.2006.02.036
ZHANG Y K, SUN M, ZHANG X J, WU J P, HE Z Y, MA Y P . Study on close planting and nutrient improvement of maize Ⅱ. Effect of row distance to yield and nutrition of maize. Journal of Maize Sciences, 2006,14(2):108-111. (in Chinese)
doi: 10.3969/j.issn.1005-0906.2006.02.036
[27] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海 . 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016,42(1):104-112.
doi: 10.3724/SP.J.1006.2016.00104
CHANG J F, ZHANG H H, LI H P, DONG P F, LI C H . Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomica Sinica, 2016,42(1):104-112. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00104
[28] 李万星, 刘永忠, 曹晋军, 靳鲲鹏, 赵文媛, 王红兰 . 肥料与密度对玉米农艺性状和产量的影响. 中国农学通报, 2011,27(15):194-198.
doi: 10.3969/j.issn.1004-874X.2013.19.003
LI W X, LIU Y Z, CAO J J, JIN K P, ZHAO W Y, WANG H L . Effects of fertilizer and density on maize. Chinese Agricultural Science Bulletin, 2011,27(15):194-198. (in Chinese)
doi: 10.3969/j.issn.1004-874X.2013.19.003
[29] 薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静 . 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010,36(6):1022-1029.
doi: 10.3724/SP.J.1006.2010.01022
XUE J Q, ZHANG R H, MA G S, LU H D, ZHANG X H, LI F Y, HAO Y C, TAI S J . Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agronomica Sinica, 2010,36(6):1022-1029. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01022
[30] 佟屏亚, 程延年 . 玉米密度与产量因素关系的研究. 北京农业科学, 1995,13(1):23-25.
TONG P Y, CHENG Y N . The study of relationship between corn density and yield factors. Beijing Agricultural Sciences, 1995,13(1):23-25. (in Chinese)
[31] 董树亭, 王空军, 胡昌浩 . 玉米品种更替过程中群体光合特性的演变. 作物学报, 2000,26(2):200-204.
DONG S T, WANG K J, HU C H . Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agronomica Sinica, 2000,26(2):200-204. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!