Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4131-4142.doi: 10.3864/j.issn.0578-1752.2018.21.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Microwave Treatments on Rice Quality and Lipase Activity

Jian YUAN(),Teng ZHAO,Chao DING,ChangRui XING,Bin ZHANG,ShangBing CHEN,Rong HE,XingRong JU   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210046
  • Received:2018-03-23 Accepted:2018-05-16 Online:2018-11-01 Published:2018-11-01
  • Contact: Jian YUAN E-mail:yjian_nj@163.com

Abstract:

【Objective】This paper researched the influence of the different microwave conditions on water migration, quality, lipase activity, internal structure of paddy, and it aimed to improve the drying rate of rice, shorten the drying time and select the optimum conditions of microwave drying, realizing fast and efficient drying. 【Method】 In this paper, rice was treated to 50℃, 60℃ and 70℃with additional tempering or no-tempering by the microwave dosage of 0.69, 1.29, 1.92 W·g -1. The quality as well as physical and chemical indexes of paddy were determined, and the changes of water migration and internal structure were observed by LF-NMR and SEM. 【Result】 Microwave dose and rice temperature were key factors that affected rice quality. The processing quality of paddy rice was better under the condition of 1.29 W·g -1, 60℃. The rate of crack, broken rice, brown rice, head rice were 8.65%, 6.76%, 83.9%, and 68.07%, respectively. Whereas, the processing quality of paddy rice had no significant difference with hot air drying. Meanwhile, at the same time, microwave had obvious inhibitory effect on lipase activity. The activity of lipase was lowest (5.65 U) in the tempered condition of 1.92 W·g -1, 70℃, and the results showed that the lipase activity in this condition was 4.65 U less than that under control. By using the membership degree comprehensive scoring method to judge the quality after drying, in the condition of 1.29 W·g -1, 60℃-tempering, the rice score ranked third, therefore, with considering the heating rate and the quality score, it was the most suitable microwave treatment condition. The results of LF-NMR and SEM showed that the water content of paddy rice decreased and gradually moved towards the left. It suggested that water was more tightly bonded to other components. The results of SEM showed that the rupture of the endosperm cells and the degree of starch exposure were increased, the structure of radioactive arrangement gradually disappeared, the composite starch gradually disintegrated, and the single grain and the internal cracks in rice increased. 【Conclusion】 Microwave drying had a significant effect on the heating rate, quality and enzyme activity of rice. The firmness of the combination of water and other components was stronger after microwave. During drying process the loss of water could cause the change of the internal structure of paddy to different degree. Compared with control group, the internal cracks of microwave treated sample were smaller.

Key words: microwave drying, moisture migration, processing quality, fatty acid value, lipase, rice

Table 1

Comparison of setting power and actual power of microwave equipment"

有效输出功率
Effective output (W)
微波剂量
Microwave irradiation dose (W·g-1)
523.52±10.21 0.69
980.34±16.42 1.29
1456.83±18.85 1.92

Fig. 1

Effect of microwave treatment on rice temperature"

Fig. 2

Effects of microwave drying time on rice moisture content and water loss rate"

Fig. 3

Linear fitting of total signal intensity and water content of rice grain with different water contents"

Fig. 4

The inversion spectrum of LF-NMR signal intensity of rice grains and transverse relaxation time T2 and the water proportion of different state of rice was changed with time under different conditions Fig. 4-A and 4-C were the inversion spectrum of the transverse relaxation time T2 after hot-air treatment and microwave treatment, respectively. Fig. 4-B and 4-D were the proportion of the peaks of rice grains after hot-air treatment and microwave treatment, respectively. UT: Untreated samples. HAT-1 h, HAT-2 h, HAT-3 h, HAT-4 h and HAT-5 h represented the hot air treatment for 1 h, 2 h, 3 h, 4 h and 5 h, respectively. MW-2 min, MW-6 min, MW-10 min, MW-14 min, MW-18 min represented microwave treatment with 1.29 W g-1 microwave doses for 2 min, 6 min, 10 min, 14 min and 18 min, respectively. The same as below"

Table 2

Effects of different treatments on rice moisture and processing quality"

稻谷最终温度
Final temperature (℃)
微波剂量
Microwave irradiation dose (W·g-1)
缓苏工艺
(是/否)
Tempering
(Y/N)
理化指标 Physiochemical indexes
水分
Moisture content (%)
出糙率
Brown rice rate (%)
爆腰率
Crack rate
(%)
整精米率
Head rice rate
(%)
碎米率
Broken rice rate (%)
热风对照组 Hot air treatment (60℃) 16.02±0.19lm 83.83±0.23ab 7.00±0.17b 66.41±0.14ef 7.61±0.09f
50 0.69 是 Y 15.42±0.15ghi 83.57±0.71ab 5.66±0.19a 67.89±0.48hi 6.26±0.17b
否 N 15.70±0.27ijk 83.09±0.88a 12.98±0.14 65.41±0.09b 8.56±0.14i
1.29 是 Y 15.66±0.14ijk 83.46±0.35ab 8.00±0.08c 67.45±0.37ghi 6.24±0.13b
否 N 16.01±0.23lm 83.35±0.42ab 13.11±0.09gh 65.96±0.57cde 7.72±0.16f
1.92 是 Y 15.78±0.18jkl 82.89±0.87a 13.78±0.11i 64.89±0.25ab 8.12±0.08gh
否 N 16.24±0.16m 82.77±0.62a 14.18±0.09j 64.63±0.12a 8.91±0.14j
60 0.69 是 Y 15.09±0.20cdef 84.33±0.47b 5.85±0.14a 69.06±0.49j 5.17±0.05a
否 N 15.28±0.16efgh 83.56±0.88ab 12.33±0.14e 66.36±0.37ef 7.19±0.07e
1.29 是 Y 15.23±0.21defg 83.90±0.77ab 8.65±0.10d 68.07±0.55i 6.76±0.13d
否 N 15.58±0.19hij 83.68±0.57ab 12.45±0.12ef 66.86±0.58fg 7.99±0.14g
1.92 是 Y 15.45±0.09ghi 83.45±0.85ab 13.89±0.12i 65.48±0.43bcd 8.95±0.09j
否 N 15.94±0.12klm 83.10±0.42a 14.32±0.15j 65.38±0.27bc 8.66±0.16i
70 0.69 是 Y 14.55±0.24a 83.53±0.63ab 7.00±0.08b 67.56±0.57ghi 6.43±0.21bc
否 N 14.87±0.11bc 83.04±0.35a 12.62±0.11f 65.84±0.58cde 8.15±0.09gh
1.29 是 Y 14.73±0.07ab 83.37±0.47ab 8.68±0.09d 67.25±0.31gh 6.53±0.14c
否 N 15.02±0.15bcde 83.28±0.45ab 13.28±0.13h 66.16±0.41def 8.27±0.13h
1.92 是 Y 14.93±0.13bcd 82.89±0.27a 14.12±0.07j 64.91±0.34ab 9.02±0.10j
否 N 15.38±0.13fghi 82.80±0.67a 16.00±0.16k 64.26±0.33a 9.39±0.16k

Fig. 5

Effects of different treatments on paddy fatty acid value and lipase Fig. 5-A represented the fatty acid value of paddy in different treatment conditions. Fig. 5-B represented the lipase activity of paddy under different treatment conditions. UT: Untreated sample. HAT-60℃: Hot air treatment (60℃). MW-1: Microwave dose was 0.69 W·g-1 with tempering. MW-2: Microwave dose was 0.69 W·g-1 without tempering. MW-3: Microwave dose was 1.29 W·g-1 with tempering. MW-4: Microwave dose was 1.29 W·g-1 without tempering. MW-5: Microwave dose was 1.92 W·g-1 with tempering. MW-6: Microwave dose was 1.92 W·g-1 without tempering"

Fig. 6

Cross-sectional structure of brown rice endosperm under different treatment conditions A represented untreated sample. B, D, F, H represented hot air treatment group in the condition of 60℃ and their moisture were separately 17.42%, 14.25%, 12.97%, 10.27%. C, E, G, I represented microwave treatment group in the condition of 1.29 W·g-1 and their moisture were separately 17.69%, 14.26%, 12.73% and 10.78%. The same as below"

Fig. 7

Microstructure of brown rice starch granules under different treatment conditions"

Table 3

The degree of membership and synthesis of rice grain quality under different microwave treatments"

稻谷最终温度
Final temperature (℃)
微波剂量
Microwave irradiation dose (W·g-1)
缓苏工艺
(是/否)
Tempering
(Y/N)
隶属度 Membership degree 综合评分
Comprehensive score
得分排名
Rankings
整精米率
Head rice rate
爆腰率
Broken rice rate
脂肪酸值
Fatty acid value
脂肪酶活力Lipase activity 升温速率
Heating rate
50








0.69
是 Y 0.685 1.000 0.000 0.184 0.107 0.45 10
否 N 0.217 0.292 0.216 0.000 0.107 0.19 18
1.29
是 Y 0.602 0.774 0.253 0.274 0.490 0.51 7
否 N 0.321 0.279 0.273 0.108 0.490 0.32 17
1.92
是 Y 0.119 0.215 0.631 0.303 1.000 0.44 11
否 N 0.070 0.176 0.431 0.168 1.000 0.36 14
60





0.69
是 Y 1.000 0.982 0.707 0.324 0.063 0.68 1
否 N 0.396 0.355 0.656 0.058 0.063 0.34 16
1.29
是 Y 0.719 0.711 0.813 0.404 0.359 0.63 3
否 N 0.491 0.343 0.756 0.230 0.359 0.46 8
1.92
是 Y 0.230 0.204 0.769 0.596 0.994 0.52 6
否 N 0.211 0.162 0.664 0.336 0.994 0.46 9
70






0.69
是 Y 0.887 0.870 0.933 0.416 0.000 0.67 2
否 N 0.298 0.327 0.887 0.120 0.000 0.34 15
1.29

是 Y 0.564 0.708 1.000 0.625 0.224 0.62 4
否 N 0.358 0.263 0.989 0.258 0.224 0.43 12
1.92

是 Y 0.160 0.182 0.982 0.919 0.911 0.55 5
否 N 0.000 0.000 0.962 0.499 0.911 0.42 13
[1] 梁礼燕 . 热风、微波薄层干燥稻谷品质研究[D]. 南京: 南京财经大学, 2012.
LIANG L Y . Research on the quality of hot air and microwave drying of thin layer rough rice[D]. Nanjing: Nanjing University of Finance and Economics, 2012. ( in Chinese)
[2] 方茜, 陶诚 . 当前我国高水分粮处理的现状与对策. 粮食储藏, 2010,39(2):14-20.
doi: 10.3969/j.issn.1000-6958.2010.02.004
FANG Q, TAO C . Status quo and strategy on treatment of post-harvest grain of high moisture content in China. Grain Storage, 2010,39(2):14-20. (in Chinese)
doi: 10.3969/j.issn.1000-6958.2010.02.004
[3] 杨国峰, 周雯, KINGSLY A R P, 夏宝林, 仇红娟, 刘强, 张越, 陈江 . 高温连续干燥与干燥-通风联合对稻谷品质的影响. 食品科学, 2014,35(17):1-7.
doi: 10.7506/spkx1002-6630-201417001
YANG G F, ZHOU W, KINGSLY A R P, XIA B L, QIU H J, LIU Q, ZHANG Y, CHEN J . Effects of high temperature single-pass drying process and drying-aerating process on post-drying quality of rough rice. Food Science, 2014,35(17):1-7. (in Chinese)
doi: 10.7506/spkx1002-6630-201417001
[4] 张银 . 热风温度对种子稻谷干燥速率与发芽率的影响[D]. 南京: 南京农业大学, 2004.
ZHANG Y . The effect of hot air on paddy drying and germination rate[D]. Nanjing: Nanjing Agricultural University, 2004. ( in Chinese)
[5] PARK I, PARK J D, LEE H Y, KUM J S . Effects of air, microwave, and micro vacuum drying on brown rice quality. Journal of the Korean Society for Applied Biological Chemistry, 2012,55(4):523-528.
doi: 10.1007/s13765-012-2054-0
[6] 罗剑毅 . 稻谷的远红外干燥特性和工艺的实验研究[D]. 杭州: 浙江大学, 2006.
LUO J Y . Study on drying characteristic and technology of paddy dried by far-infrared[D]. Hangzhou: Zhejiang University, 2006. ( in Chinese)
[7] 于秀荣, 赵思孟, 周长智, 郑德斌 . 微波干燥稻谷的研究. 郑州粮食学院学报, 1997(1):65-69.
YU X R, ZHAO S M, ZHOU C Z, ZHENG D B . Study on the process of microwave drying rice.Journal of Zhengzhou Grain College, 1997(1):65-69. (in Chinese)
[8] CHO K H, AOKI M, MIYATAKE Y, YOSHIZAKI S . Some experiments on microwave drying of paddy rice. Nogyo Shisetsu, 1990,21:43-49.
doi: 10.11449/sasj1971.21.43
[9] 王绍林 . 微波食品工程. 北京: 机械工业出版社, 1994.
WANG S L. Microwave in the Food Engineering. Beijing: China Machine Press, 1994. (in Chinese)
[10] 张习军, 熊善柏, 赵思明 . 微波处理对稻谷品质的影响. 中国农业科学, 2009,42(1):224-229.
doi: 10.7666/d.y1394300
ZHANG X J, XIONG S B, ZHAO S M . Effect of microwave on paddy quality. Scientia Agricultura Sinica, 2009,42(1):224-229. (in Chinese)
doi: 10.7666/d.y1394300
[11] 张玉荣, 周显青, 果玉茹 . 小麦胚微波灭酶工艺参数研究. 河南工业大学学报(自然科学版), 2008(2):7-10.
ZHANG Y R, ZHOU X Q, GUO Y R . Study on the technological parameters of deactivating enzyme in wheat germ by microwave. Journal of Henan University of Technology (Natural Science Edition), 2008(2):7-10. (in Chinese)
[12] RUEN-NGAM D . Microwave Pretreatment for Lipase Retardation in Rice Bran. Biocontrol Isbb, 2014.
[13] KIM S Y, LEE H . Effect of quality characteristics on brown rice produced from paddy rice with different moisture contents. Journal of the Korean Society for Applied Biological Chemistry, 2013,56(3):289-293.
doi: 10.1007/s13765-012-3151-9
[14] 高超, 贾梅兰, 王亚东 . 放射性废物微波处理装置有效输出功率的测定. 干燥技术与设备, 2015,13(3):13-17.
GAO C, JIA M L, WANG Y D . Determination the effective output power of microwave treatment equipment of radioactive waste. Drying Technology and Equipment, 2015,13(3):13-17. (in Chinese)
[15] 董瑞婷, 陆晖, 赵丽芹, 杨德池, 许楠 . 低温储藏稻谷品质变化及其指标差异性分析. 粮油食品科技, 2011,19(6):1-4.
DONG R T, LU H, ZHAO L Q, YANG D C, XU N . Analysis of change in low temperature storage paddy and the quality indexes. Science and Technology of Cereals, Oils and Foods, 2011,19(6):1-4.
[16] 王静, 朱永义 . 米糠中脂酶酶学性质的研究. 中国粮油学报, 2000,15(5):10-13.
doi: 10.3321/j.issn:1003-0174.2000.05.003
WANG J, ZHU Y Y . A study on enzymatic properties of rice bran lipase. Journal of the Chinese Cereals and Oils Association, 2000,15(5):10-13. (in Chinese)
doi: 10.3321/j.issn:1003-0174.2000.05.003
[17] SCHMIDTDANNERT C, SZTAJER H, STöCKLEIN W, MENGE U, SCHMID R D . Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta, 1994,1214(1):43-53.
doi: 10.1016/0005-2760(94)90008-6
[18] 张晓红, 万忠民, 孙君, 陈培栋, 刘兵 . 微波处理对大米RVA谱特征值和微观结构的影响. 食品工业科技, 2017,38(12):87-91, 96.
ZHANG X H, WAN Z M, SUN J, CHEN P D, LIU B . Effect of microwave treatment on RVA spectrum characteristic values and microstructure of rice. Science and Technology of Food Industry, 2017,38(12):87-91, 96. (in Chinese)
[19] 李云雁, 胡传荣 . 试验设计与数据处理. 北京: 化学工业出版社, 2008: 134-136.
LI Y Y, HU C R. Experimental Design and Data Processing. Beijing: Chemical Industry Press, 2008: 134-136. (in Chinese)
[20] VETRIMAN R, JYOTHIRMAYI N, RAO P H, RAMADOSS C . Inactivation of lipase and lipoxygenase in cereal bran, germ and soybean by microwave treatment. Lebensmittel-Wissenschaft Und- Technologie-Food Science and Technology, 1992,25(6):532-535.
[21] YANG W, EARP C E, HOWARD L . Tracing fissure information by scanning electron microscopy characterization of naturally fissured surfaces of rice kernels. Transactions of the ASAE, 2003,46(6):1583-1588.
doi: 10.13031/2013.15619
[22] 颜启传 . 种子学. 北京:中国农业出版社, 2001.
YAN Q C .Seed Science. Beijing: China Agriculture Press, 2001. (in Chinese)
[23] 宋平 . 基于低场核磁共振技术的水稻浸种过程种子水分检测研究[D]. 沈阳: 沈阳农业大学, 2016.
SONG P . Study of water content detection in the rice seed soaking process based on low field NMR techniques[D]. Shenyang: Shenyang Agricultural University, 2016. ( in Chinese)
[24] 宋伟, 李冬珅, 乔琳, 苏安祥, 胡婉君 . 对不同含水量粳稻谷T2峰面积和MRI图像的定量分析. 中国农业科学, 2015,48(22):4529-4538.
SONG W, LI D S, QIAO L, SU A X, HU W J . Quantitative analysis of T2 peak area and the MRI images of japonica rice with different moisture contents. Scientia Agricultura Sinica, 2015,48(22):4529-4538. (in Chinese)
[25] 李东, 谭书明, 陈昌勇, 邓毅, 张程榕, 王建明 . LF-NMR对稻谷干燥过程中水分状态变化的研究. 中国粮油学报, 2016,31(7):1-5.
doi: 10.3969/j.issn.1003-0174.2016.07.001
LI D, TAN S M, CHEN C Y, DENG Y, ZHANG C R, WANG J M . LF-NMR study on variations of different moisture states during the process of rice drying. Journal of the Chinese Cereals and Oils Association, 2016,31(7):1-5. (in Chinese)
doi: 10.3969/j.issn.1003-0174.2016.07.001
[26] 张绪坤, 祝树森, 黄俭花, 徐刚, 徐建国, 李华栋 . 用低场核磁分析胡萝卜切片干燥过程的内部水分变化. 农业工程学报, 2012,28(22):282-287.
ZHANG X K, ZHU S S, HUANG J H, XU G, XU J G, LI H D . Analysis on internal moisture changes of carrot slices during drying process using low-field NMR. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(22):282-287. (in Chinese)
[27] 唐为民 . 食用稻米的品质及其指标. 粮食科技与经济, 2004(2):43-45.
doi: 10.3969/j.issn.1007-1458.2004.02.021
TANG W M . The quality of edible rice and its index.Grain Science and Technology and Economy, 2004(2):43-45. (in Chinese)
doi: 10.3969/j.issn.1007-1458.2004.02.021
[28] 郑先哲, 周修理, 夏吉庆 . 干燥条件对稻谷加工品质影响的研究. 东北农业大学学报, 2001,32(1):48-52.
doi: 10.3969/j.issn.1005-9369.2001.01.008
ZHENG X Z, ZHOU X L, XIA J Q . The study on drying condition influencing paddy mill quality. Journal of Northeast Agricultural University, 2001,32(1):48-52. (in Chinese)
doi: 10.3969/j.issn.1005-9369.2001.01.008
[29] 任广跃, 王芳, 张忠杰, 尹君 . 干燥温度及缓苏操作对稻谷爆腰的影响. 食品研究与开发, 2013,34(19):112-114.
REN G Y, WANG F, ZHANG Z J, YIN J . Effects of drying temperature and tempering on kernel cracking of paddy. Food Research and Development, 2013,34(19):112-114. (in Chinese)
[30] ZHOU Z, BLANCHARD C, HELLIWELL S, ROBARDS K . Fatty acid composition of three rice varieties following storage. Journal of Cereal Science, 2003,37(3):327-335.
doi: 10.1006/jcrs.2002.0502
[31] VENKATESH M S, RAGHAVAN S V . An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 2004,88(1):1-18.
doi: 10.1016/j.biosystemseng.2004.01.007
[32] 胡国洲, 胡鹏, 陈光静, 王辉, 阚建全 . 食品中酶的微波钝化技术研究进展. 食品与发酵工业, 2013,39(3):141-146.
HU G Z, HU P, CHEN G J, WANG H, KAN J Q . Research progress on microwave inactivation of enzyme in food. Food and Fermentation Industries, 2013,39(3):141-146. (in Chinese)
[33] 周显青, 张玉荣, 李里特 . 不同模拟储藏条件下粳米胚乳显微结构变化. 农业工程学报, 2010,26(5):329-334.
ZHOU X Q, ZHANG Y R, LI L T . Microscopic structure changes of japonica milled rice endosperm under typical simulating storage conditions. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(5):329-334. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!