Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3542-3550.doi: 10.3864/j.issn.0578-1752.2018.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Cd Accumulation and Safety Assessment of Soil-Crop System Induced by Long-Term Different Fertilization

Ke WANG1(), ChunLi XU1, YuTing ZHANG1, ZhiBin ZHENG1, DingYong WANG1,2, XiaoJun SHI1,2()   

  1. 1College of Resources and Environment, Southwest University/Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing 400716
    2Academy of Agricultural Sciences, Southwest University, Chongqing 400716
  • Received:2018-02-28 Accepted:2018-04-09 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】 This study focused on cadmium (Cd) accumulation in soil and availability in crop induced by 23 years (1997-2013) fertilization to evaluate the extent of soil Cd contamination and the safety threshold, so that which could offer suggestions to the fertilization strategy and soil Cd safety standard of Southwest China. 【Method】 Eight fertilization treatments were employed, including only nitrogen (N), nitrogen and potassium (NK), nitrogen plus phosphorus and potassium (NPK), chemical fertilizer plus pig manure (NPK+M), chemical fertilizer plus rice straw (NPK+S), 1.5 times chemical fertilizer plus rice straw (1.5NPK+S), chloride-based fertilizers plus rice straw ((NK)ClP+S), as well as no fertilizer control (CK). Soil available Cd, soil total Cd concentration and Cd uptake by crop among different years were measured to evaluate the Cd accumulation. 【Result】 The results showed that the soil total Cd increased with the extension of fertilization time, the total Cd accumulation in soil treated with CK, N and NK for a long time without phosphorus fertilizer increased slowly, the total Cd accumulation in soil treated with phosphate fertilizer, organic fertilizer and chlorinated fertilizer increased rapidly, and NPK+M, 1.5NPK+S and (NK)ClP+S had more accumulation, increasing 1.18, 1.18 and 1.15 mg·kg-1 after 23 years fertilization, respectively. Except for without phosphate fertilizer treatments, the total Cd accumulation of all the other soils above 0.6 mg·kg-1 had the soil environmental quality risk control standard for soil contamination of agricultural land. The soil available Cd was significantly higher under all fertilization treatments than that under CK, thereinto, the content of soil available Cd increased significantly with long-term application of N, (NK) ClP+S and 1.5NPK+S. The Cd concentration in rice grain was all raised with the increasing of fertilization time, while it didn’t exceed the national food safety standard of China (Cd≤0.2 mg·kg-1). There were no obvious changes of wheat grain Cd concentration among different years, but only the Cd concentration in grain of (NK)ClP+S treatment exceeded the pollutant limit standards of food of China (Cd≤0.1 mg·kg-1). 【Conclusion】 Under the conditions of this experiment, long-term different fertilization, especially the application of phosphate fertilizer and swine manure organic manure, increased the soil total Cd content and increased the ecological risk; The long-term application of chlorinated fertilizers increased the soil available Cd content because of the decrease of soil pH, and reduced the Cd content in wheat grains. Therefore, preventing Cd from entering farmland by fertilization is an important link to ensure the safe production of agricultural products.

Key words: long-term fertilization, purple soil, wheat, rice, Cd accumulation

Fig. 1

Soil total Cd content in purple soil under long-term fertilization (1991-2014)"

Fig. 2

Soil of available Cd content in purple soil under long-term fertilization (1991-2014)"

Fig. 3

The changes of Cd content in rice straw and grain with fertilization years"

Table 1

Cd uptake by rice grain and straw (1991-2013)"

处理
Treatment
年吸收量
Annual uptake (mg?hm-2·a-1)
年吸收总量
Total annual uptake
(mg?hm-2·a-1)
籽粒 Grain 秸秆 Straw
CK 47.3 55.3 102.6
N 165.3 259.4 424.7
NK 206.2 220.5 426.7
NPK 234.5 240.9 475.5
NPK+M 313.2 227.3 540.5
NPK+S 247.2 258.7 505.9
1.5NPK+S 239.5 356.7 596.1
(NK)ClP+S 367.8 450.7 818.5

Fig. 4

The changes of Cd content in wheat straw and grain with fertilization years"

Table 2

Cd uptake by wheat grain and straw (1991-2013)"

处理
Treatment
年吸收量
Annual uptake (mg?hm-2·a-1)
年吸收总量
Total annual uptake
(mg?hm-2·a-1)
籽粒Grain 秸秆Straw
CK 61.7 260.8 322.4
N 94.5 449.2 543.7
NK 101.6 505.0 606.7
NPK 310.1 939.6 1249.7
NPK+M 293.0 1115.5 1408.5
NPK+S 233.3 769.7 1003.1
1.5NPK+S 380.3 1520.4 1900.8
(NK)ClP+S 547.1 2247.7 2794.7
[1] XU W H, LI Y R, HE J P, MA Q F, ZHANG X J, CHEN G Q, WANG H X, ZHANG H B.Cd uptake in rice cultivars treated with organic acids and EDTA. Journal of Environmental Sciences, 2010, 22(3): 441-447.
doi: 10.1016/S1001-0742(09)60127-3
[2] SATARUG S, BAKER J R, URBENJAPOL S,HASWELL-ELKINS M, REILLY P E B, WILLIAMS D J, MOORE M R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 2003, 137(1/2): 65-83.
doi: 10.1016/S0378-4274(02)00381-8 pmid: 12505433
[3] WEI S H, ZHOU Q X.Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environmental Science and Pollution Research, 2006, 13(3): 151-155.
doi: 10.1065/espr2005.06.269 pmid: 16758704
[4] MAPANDA F, MANGWAYANA E N, NYAMANGARA J, GILLER K E.The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture Ecosystems and Environment, 2005, 107(2/3): 151-165.
doi: 10.1016/j.agee.2004.11.005
[5] WANG Y Q, XIAO L Z, LI S Y, GUO Y, CAI X D.Effects of combined pollution of Pb and Cd on growth and yield of rice. Agricultural Science and Technology, 2010, 11(5): 168-170.
[6] 朱志勇, 李友军, 郝玉芬, 蒋瑞婕, 刘晓红, 刘露露, 张晓雯. 镉对小麦(Triticum aestivum)干物质积累、转移及籽粒产量的影响. 农业环境科学学报, 2012, 31(2): 252-258.
ZHU Z Y, LI Y J, HAO Y F, JIANG R J, LIU X H, LIU L L, ZHANG X W.Effects of Cd on accumulations and translocation of biomasses and yield of different wheat (Triticum aestivum) cultivars. Journal of Agro-Environment Science, 2012, 31(2): 252-258. (in Chinese)
[7] 卢鑫, 胡文友, 黄标, 李元, 祖艳群, 湛方栋, 邝荣禧. 基于UNMIX模型的矿区周边农田土壤重金属源解析. 环境科学, 2018(3): 1-18.
LU X, HU W Y, HUANG B, LI Y, ZU Y Q, ZHAN F D, KUANG R X.Source apportionment of soil heavy metals in farmland soils around mining area based on UNMIX model. Environment Science, 2018(3): 1-18. (in Chinese)
[8] 董騄睿,胡文友, 黄标, 刘刚, 瞿明凯, 邝荣禧. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析. 中国环境科学, 2015, 35(7): 2103-2111.
doi: 10.3969/j.issn.1000-6923.2015.07.031
DONG L R, HU W Y, HUANG B, LIU G, QV M K, KUANG R X.Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization. China Environmental Science, 2015, 35(7): 2103-2111. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2015.07.031
[9] 戴彬, 吕建树, 战金成, 张祖陆, 刘洋, 周汝佳. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价. 环境科学, 2015, 36(2): 507-515.
doi: 10.13227/j.hjkX.2015.02.018
DAI B, LÜ J S, ZHAN J C, ZHANG Z L, LIU Y, ZHOU R J.Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, Eastern China. Environmental Science, 2015, 36(2): 507-515. (in Chinese)
doi: 10.13227/j.hjkX.2015.02.018
[10] 徐一兰, 金自力, 刘唐兴, 程爱武, 李永, 李益锋, 何炜, 黄新杰, 皮俊, 许晓玲. 不同施肥措施对双季稻田土壤和大麦植株镉累积的影响. 生态环境学报, 2017, 26(7): 1235-1241.
doi: 10.16258/j.cnki.1674-5906.2017.07.021
XU Y L, JIN Z L, LIU T X, CHENG A W, LI Y, LI Y F, HE W, HUANG X J, PI J, XU X L.Effects of long-term fertilization on heavy metal Cd accumulation in the surface soil and barley plant of double-cropping paddy rice system. Ecology and Environmental Sciences, 2017, 26(7): 1235-1241. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2017.07.021
[11] 张继舟, 王宏韬, 倪红伟, 马献发, 袁磊. 我国农田土壤重金属污染现状、成因与诊断方法分析. 土壤与作物, 2012, 1(4): 212-218.
ZHANG J Z, WANG H T, NI H W, MA X F, YUAN L.Current situation, sources and diagnosis method analysis of heavy metal contamination in agricultural soils. Soil and Crop, 2012, 1(4): 212-218. (in Chinese)
[12] 白玲玉, 曾希柏, 李莲芳, 彭畅, 李树辉. 不同农业利用方式对土壤重金属累积的影响及原因分析. 中国农业科学, 2010, 43(1): 96-104.
BAI L Y, ZENG X B, LI L F, PENG C, LI S H.Effects of land use on heavy metal accumulation in soils and source analysis. Scientia Agricultura Sinica, 2010, 43(1): 96-104. (in Chinese)
[13] 何梦媛, 董同喜, 茹淑华, 苏德纯. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异. 环境科学, 2017, 38(4): 1576-1586.
doi: 10.13227/j.hjkx.201609227
HE M Y, DONG T X, RU S H, SU D C.Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure. Environment Science, 2017, 38(4): 1576-1586. (in Chinese)
doi: 10.13227/j.hjkx.201609227
[14] 曾希柏, 徐建明, 黄巧云, 唐世荣, 李永涛, 李芳柏, 周东美, 武志杰.中国农田重金属问题的若干思考. 土壤学报, 2013(1): 186-194.
ZENG X B, XU J M, HUANG Q Y, TANG S R, LI Y T, LI F B, ZHOU D M, WU Z J.Some deliberations on the issues of heavy metals in farmlands of China. Acta Pedologica Sinica, 2013, 50(1): 186-194. (in Chinese)
[15] HAO X Y, CHANG C.Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta. Agriculture Ecosystems and Environment, 2003, 94(1): 89-103.
doi: 10.1016/S0167-8809(02)00008-7
[16] 宋波, 陈同斌, 郑袁明, 黄泽春, 郑国砥, 罗金发. 北京市菜地土壤和蔬菜镉含量及其健康风险分析. 环境科学学报, 2006, 26(8): 1343-1353.
SONG B, CHEN T B, ZHENG Y M, HUANG Z C, ZHENG G D, LUO J F.A survey of cadmium concentrations in vegetables and soils in Beijing and the potential risks to human health. Acta Scientiae Circumstantiae, 2006, 26(8):1343-1353. (in Chinese)
[17] 陈芳, 董元华, 安琼, 钦绳武. 长期肥料定位试验条件下土壤中重金属的含量变化. 土壤, 2005, 37(3): 308-311.
doi: 10.3321/j.issn:0253-9829.2005.03.015
CHEN F, DONG Y H, AN Q, QIN S W.Variation of soil heavy metal contents in a long-term fertilization experiment soils. Soils, 2005, 37(3): 308-311. (in Chinese)
doi: 10.3321/j.issn:0253-9829.2005.03.015
[18] 鲁如坤. 土壤-植物营养学原理和施肥. 北京: 化学化工出版社, 1998: 438-439.
LU R K.Soil- Plant Nutrition Theory and Fertilization. Beijing: Chemical Industry Press, 1998: 438-439. (in Chinese)
[19] TORBERT H A, DANIEL T C, LEMUNYON J L, JONES R M.Relationship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous and noncalcareous soils. Journal of Environmental Quality, 2002, 31:1380-1387.
doi: 10.2134/jeq2002.1380 pmid: 12175059
[20] 闫湘, 王旭, 李秀英, 于兆国. 我国水溶肥料中重金属含量、来源及安全现状. 植物营养与肥料学报, 2016, 22(1): 8-18.
doi: 10.11674/zwyf.14443
YAN X, WANG X, LI X Y, YU Z G.Contents, source and safety status of major heavy metals in water-soluble fertilizers in China. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 8-18. (in Chinese)
doi: 10.11674/zwyf.14443
[21] 李本银, 黄绍敏, 张玉亭, 周东美, 吴晓晨, 沈阿林, 徐建明, 李忠佩. 长期施用有机肥对土壤和糙米铜、锌、铁、锰和镉积累的影响. 植物营养与肥料学报, 2010, 16(1): 129-135.
doi: 10.11674/zwyf.2010.0119
LI B Y, HUANG S M, ZHANG Y T, ZHOU D M, WU X C, SHEN A L, XU J M, LI Z P.Effect of long-term application of organic fertilizer on Cu, Zn, Fe, Mn and Cd in soil and brown rice. Plant Nutrition and Fertilizer Science, 2010, 16(1): 129-135. (in Chinese)
doi: 10.11674/zwyf.2010.0119
[22] 汤文光, 肖小平, 唐海明, 张海林, 陈阜, 陈中督, 薛建福, 杨光立. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响. 应用生态学报, 2015, 26(1):168-176.
TANG W G, XIAO X P, TANG H M, ZHANG H L, CHEN F, CHEN Z D, XUE J F, YANG G L.Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Chinese Journal of Applied Ecology, 2015, 26(1):168-176. (in Chinese)
[23] 彭玉龙, 王永敏, 覃蔡清, 王定勇. 重庆主城区降水中重金属的分布特征及其沉降量. 环境科学, 2014, 35(7): 2490-2496.
doi: 10.13227/j.hjkx.2014.07.008
PENG Y L, WANG Y M, QIN C Q, WANG D Y.Concentrations and deposition fluxes of heavy metals in precipitation in core urban areas of Chongqing. Environmental Science, 2014, 35(7): 2490-2496. (in Chinese)
doi: 10.13227/j.hjkx.2014.07.008
[24] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展. 生态学报, 2007(7): 3043-3050.
doi: 10.3321/j.issn:1000-0933.2007.07.046
ZHOU S W, XU M G. The progress in phosphate remediation of heavy metal contaminated soils. Acta Ecologica Sinica, 2007(7): 3043-3050. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2007.07.046
[25] 刘昭兵, 纪雄辉, 彭华, 田发祥, 吴家梅, 石丽红. 磷肥对土壤中镉的植物有效性影响及其机理. 应用生态学报, 2012, 23(6): 1585-1590.
LIU Z B, JI X H, PENG H, TIAN F X, WU J M, SHI L H.Phosphate fertilizer plants effectively influence and mechanism of cadmium in soil. Chinese Journal of Applied Ecology, 2012, 23(6):1585-1590. (in Chinese)
[26] 黄化刚, 李廷强, 朱治强, 王凯, 杨肖娥. 可溶性磷肥对重金属复合污染土壤东南景天提取锌/镉及其养分积累的影响. 植物营养与肥料学报, 2012,18(2): 382-389.
doi: 10.11674/zwyf.2012.11294
HUANG H G, LI T Q, ZHU Z Q, WANG K, YANG X E.Effects of soluble phosphate fertilizer on Zn /Cd phytoextraction and nutrient accumulation ofSedum alfredii H. in co-contaminated soil. Plant Nutrition and Fertilizer Science, 2012, 18(2): 382-389. (in Chinese)
doi: 10.11674/zwyf.2012.11294
[27] 董元彦, 罗厚庭, 李学垣. 黄棕壤和红壤吸附磷酸根后对Zn2+和Cd2+次级吸附的动力学. 环境化学, 1995, 14(4): 300-305.
DONG Y Y, LUO H T, LI X Y.Kinetics of Zn2+ and Cd2+ secondary adsorption on yellow brown soil and red soil pretreated with phosphate. Environmental Chemistry, 1995, 14(4): 300-305. (in Chinese)
[28] 方雅瑜, 邹慧玲, 尹晓辉, 陈楠, 杨登, 魏祥东. 赤泥和有机肥对镉、铅在水稻中吸收分布的影响. 农业资源与环境学报, 2016, 33(5): 466-476.
doi: 10.13254/j.jare.2016.0080
FANG Y Y, ZOU H L, YIN X H, CHEN N, YANG D, WEI X D.Effects of red-mud and organic fertilizer on cadmium and lead absorption and distribution in rice. Journal of Agricultural Resources and Environment, 2016, 33(5): 466-476. (in Chinese)
doi: 10.13254/j.jare.2016.0080
[29] 马铁铮, 马友华, 付欢欢, 王强, 徐露露, 聂静茹, 于倩倩. 生物有机肥和生物炭对Cd和Pb污染稻田土壤修复的研究. 农业资源与环境学报, 2015, 32(1):14-19.
MA T Z, MA Y H, FU H H, WANG Q, XU L L, NIE J R, YU Q Q.Remediation of biological organic fertilizer and biochar in paddy soil contaminated by Cd and Pb. Journal of Agricultural Resources and Environment, 2015, 32(1):14-19. (in Chinese)
[30] ZENG F R, ALI S, ZHANG H T, OUYANG Y B, QIU B Y, WU F B, ZHANG G P.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 2011, 159(1): 84-91.
doi: 10.1016/j.envpol.2010.09.019 pmid: 20952112
[31] 王浩, 章明奎. 污染土壤中有机质和重金属互相作用的模拟研究. 浙江大学学报(农业与生命科学版), 2009, 35(4): 460-466.
doi: 10.3785/j.issn.1008-9209.2009.04.017
WANG H, ZHANG M K.Simulated study on interactions between heavy metals and organic matter in contaminated soil. Journal of Zhejiang University (Agriculture and Life Science ), 2009, 35(4): 460-466. (in Chinese)
doi: 10.3785/j.issn.1008-9209.2009.04.017
[32] 钟晓兰, 周生路, 黄明丽, 赵其国. 土壤重金属的形态分布特征及其影响因素. 生态环境学报, 2009, 18(4):1266-1273.
ZHONG X L, ZHOU S L, HUANG M L, ZHAO Q G.Chemical form distribution characteristic of soil heavy metals and its influencing factors. Ecology and Environmental Sciences, 2009, 18(4):1266-1273. (in Chinese)
[33] ALVARENGA P, GONCALVES A P, FERNANDES R M, DE VARENNES A, VALLINI G, DUARTE E, CUNHA-QUEDA A C. Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere, 2009, 74(10): 1292-1300.
doi: 10.1016/j.chemosphere.2008.11.063 pmid: 19118864
[34] 贾乐, 朱俊艳, 苏德纯. 秸秆还田对镉污染农田土壤中镉生物有效性的影响. 农业环境科学学报, 2010, 29(10):1992-1998.
JIA L, ZHU J Y, SU D C.Effects of crop straw return on soil cadmium availability in different cadmium contaminated soil. Journal of Agro-Environment Science, 2010, 29(10): 1992-1998. (in Chinese)
[35] 张亚丽, 沈其荣, 姜洋. 有机肥料对镉污染土壤的改良效应. 土壤学报, 2001, 38(2): 212-218.
doi: 10.11766/trxb200003240209
ZHANG Y L, SHEN Q R, JIANG Y.Effect of organic manure on the amelioration of Cd-pollution soil. Acta Pedologica Sinica, 2001, 38((2): 212-218. (in Chinese)
doi: 10.11766/trxb200003240209
[36] 杨林生, 张宇亭, 黄兴成, 张跃强, 赵亚南, 石孝均. 长期施用含氯化肥对稻-麦轮作体系土壤生物肥力的影响. 中国农业科学, 2016, 49(4): 686-694.
doi: 10.3864/j.issn.0578-1752.2016.04.008
YANG L S, ZHANG Y T, HUANG X C, ZHANG Y Q, ZHAO Y N, SHI X J.Effects of ling-term application of chloride containing fertilizers on biological fertility of purple soil under a rice-wheat rotation system. Scientia Agricultura Sinica, 2016, 49(4): 686-694. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.008
[37] ZHANG Y, THOMASE B W, VRIES W D, SHI X, HAO X.Impacts of long-term nitrogen fertilization on acid buffering rates and mechanisms of a slightly calcareous clay soil. Geoderma, 2016, 305: 92-99.
doi: 10.1016/j.geoderma.2017.05.021
[38] GANIJIR B L, DHOOT L N.How soil pH affects the availability of plant nutrients. Farmer and Parliament, 1981, 16(9): 13-14.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[11] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[15] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!