Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3531-3541.doi: 10.3864/j.issn.0578-1752.2018.18.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research of the Irrigation Mode Controlled by Cumulative Radiation on Tomato Growth and Water and Fertilizer Utilization in Greenhouse

XiaoRan WEI(), RuiFeng CHENG(), QiChang YANG, YongKang HE, Chen ZHANG   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/ Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081
  • Received:2018-03-08 Accepted:2018-05-16 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】 Under the irrigation mode controlled by cumulative radiation, the objective of this paper was to study on the effects of different irrigation amount on tomato growth, water and fertilizer utilization in tomato flowering and fruit-set stage, so as to provide the scientific basis for tomato efficient production in Chinese solar greenhouse. 【Method】 Under the condition of soil ridge substrate embedded cultivation to test “harvest” hybrid tomato by the nutrient solution drip irrigation, irrigation mode was divided into regular time interval irrigation (hereinafter referred to as “normal irrigation”, CK) and irrigation controlled by cumulative radiation, which was divided into low irrigation (T1), middle irrigation (T2) and high irrigation (T3). It researched on the irrigation modes and amount difference of growth, development, and water and fertilizer utilization in tomato flowering and fruit-set stage. 【Result】Compared with CK, the irrigation amount of T1, T2 and T3 reduced by 39.3%, 30.3% and 14.0%, respectively. The greater irrigation amount was, the higher substrate moisture content was, as follow: CK > T3 > T2 > T1. Irrigation mode controlled by cumulative radiation was better for tomato vegetative and reproductive growth, and significantly improved tomato biomass. Compared with treatment CK, the tomato biomass of T1, T2 and T3 had increased by 57.1%, 75.3% and 32.7%, respectively. Among them, the tomato biomass of treatment T2 was 102.9 g·plant-1, which was also significantly higher than that of T1 and T3. Controlled by cumulative radiation, irrigation amount on sunny day was more than that on cloudy day, and irrigation amount on noon time was more than that on morning and afternoon, which was more consistent with the plant's demand for water and fertilizer. Besides, it saved the water and fertilizer and avoided the waste of water and fertilizer. Compared with CK, the drainage rate of T3 on sunny and cloudy day reduced by 62.5% and 72.6%, respectively. The suitable irrigation amount controlled by cumulative radiation also significantly improved tomato yield and irrigation water utilization efficiency. Compared with CK, the tomato yield of T2 was improved by 14.2%, reached to 61.3 t·hm-2, and the irrigation water utilization efficiency was improved by 34.1%. Too little irrigation amount inhibited the production of plants. 【Conclusion】 Irrigation mode controlled by cumulative radiation could promote growth and effectively save water and fertilizer. Among them, the irrigation amount of T2 was 533.0 m3·hm-2, which could be used as a referenced nutrient solution for tomato flowering and fruit-set stage in Chinese solar greenhouse.

Key words: cumulative radiation, irrigation amount, water and fertilizer utilization, flowering and fruit-set stage, tomato

Fig. 1

Schematic diagram of soil ridge substrate-embedded cultivation method"

Fig. 2

Schematic diagram of experiment arrangement"

Table 1

The irrigation amounts and nutrient rates"

时期
Time
处理
Treatment
每次灌溉量
Each irrigation amount (m3·hm-2)
总灌溉量
Total irrigation amount (m3·hm-2)
施肥量 Nutrient rates(kg·hm-2
N P2O5 K2O
花期
Flowering stage
CK 1.3 319.3 51.8 28.9 83.1
T1 2.0 199.8 32.4 18.1 52.0
T2 2.3 229.0 37.2 20.8 59.6
T3 2.5 258.3 41.9 23.4 67.2
坐果期
Fruit-set stage
CK 2.3 445.8 72.3 40.4 116.1
T1 2.3 264.8 43.0 24.0 68.9
T2 2.5 304.0 49.3 27.6 79.1
T3 3.5 399.8 64.8 36.2 104.1

Fig. 3

Changed situation of substrate moisture content under continual overcast day(Nov.10-Nov.16, 2017)"

Fig. 4

Changed situation of substrate moisture content under continual sunny day(Dec.5-Dec.11, 2017)"

Fig. 5

Effects of different treatments on height and stem thickness of tomato plants"

Fig. 6

Effect of different treatments on tomato biomass"

Fig. 7

Irrigation pattern controlled by cumulative radiation (Dec.1-Dec.6) The dotted line is cumulative solar radiation threshold"

Table 2

Irrigation and drainage amount of tomato under different irrigation modes"

日期
Date
天气
Weather
灌溉量Irrigation amount (m3·hm-2) 排出量Drainage amount (m3·hm-2) 排出率Drainage ratio (%)
CK T1 T2 T3 CK T3 CK T3
Dec. 1 多云Cloudy 21.3 10.6 11.8 17.1 10.2 1.8 47.9 10.5
Dec. 2 阴 Overcast 20.7 5.8 7.1 10.3 10.4 1.2 50.3 11.8
Dec. 3 阴 Overcast 21.4 7.7 9.4 13.5 11.1 2.5 51.8 18.8
Dec. 4 晴 Sunny 22.7 9.7 11.8 16.8 6.4 2.0 28.3 12.1
Dec. 5 晴 Sunny 22.3 9.7 11.8 16.8 6.1 1.5 27.4 8.7
Dec. 6 晴 Sunny 22.0 10.7 11.8 16.8 6.5 1.9 29.7 11.4

Fig. 8

Effects of different treatments on yield and irrigation water utilization efficiency"

[1] 王秀康, 邢英英, 张富仓. 膜下滴灌施肥番茄水肥供应量的优化研究. 农业机械学报, 2016, 47(1): 141-150.
doi: 10.6041/j.issn.1000-1298.2016.01.019
WANG X K, XING Y Y, ZHANG F C.Optimal amount of irrigation and fertilization under drip fertigation for tomato. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 141-150. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2016.01.019
[2] 邢英英, 张富仓, 吴立峰, 范军亮, 张燕, 李静. 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量. 农业工程学报, 2015, 31(增刊 1): 110-121.
doi: 10.3969/j.issn.1002-6819.2015.z1.014
XING Y Y, ZHANG F C, WU L F, FAN J L, ZHANG Y, LI J.Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(Suppl.1): 110-121. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2015.z1.014
[3] 王鹏勃, 李建明, 丁娟娟, 刘国英, 潘铜华, 杜清洁, 常毅博.水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响. 中国农业科学, 2015, 48(2): 314-323.
doi: 10.3864/j.issn.0578-1752.2015.02.11
WANG P B, LI J M, DING J J, LIU G Y, PAN T H, DU Q J, CHANG Y B.Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag. Scientia Agricultura Sinica, 2015, 48(2): 314-323. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.02.11
[4] 张国红, 袁丽萍, 郭英华, 朱鑫, 张振贤. 不同施肥水平对日光温室番茄生长发育的影响. 农业工程学报, 2005, 21(增刊): 151-154.
doi: 10.3321/j.issn:1002-6819.2005.z2.038
ZHANG G H, YUAN L P, GUO Y H, Zhu X, Zhang Z X.Effects of fertilization levels on the growth and development of tomato in solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(Suppl.): 151-154. (in Chinese)
doi: 10.3321/j.issn:1002-6819.2005.z2.038
[5] 李银坤, 郭文忠, 薛绪掌, 乔晓军, 王利春, 陈红, 赵倩, 陈菲. 不同灌溉施肥模式对温室番茄产量、品质及水肥利用的影响. 中国农业科学, 2017, 50(19): 3757-3765.
doi: 10.3864/j.issn.0578-1752.2017.19.012
LI Y K, GUO W Z, XUE X Z, WANG L C, CHEN H, ZHAO Q, CHEN F.Effects of different fertigation modes on tomato yield, fruit quality, and water and fertilizer utilization in greenhouse. Scientia Agricultura Sinica, 2017, 50(19): 3757-3765. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.19.012
[6] 邢英英, 张富仓, 张燕, 李静, 强生才, 吴立峰.膜下滴灌水肥耦合促进番茄养分吸收及生长.农业工程学报, 2014, 30(21): 70-80.
doi: 10.3969/j.issn.1002-6819.2014.21.010
XING Y Y, ZHANG F C, Z Y, LI J, QIANG S C, WU L F.Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato's nutrient uptake and growth. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 70-80. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.21.010
[7] GIUFFRIDA F, LIPARI V.Leaching irrigation to prevent salt accumulation in the substrate. Acta Horticulturae, 2003, 609: 435-440.
[8] 周艳丽, 程智慧, 孟焕文, 杜慧芳, 姚静. 有机基质配比对番茄生长发育及产量和品质的影响. 西北农林科技大学学报(自然科学版), 2005, 33(1): 79-82.
ZHOU Y L, CHENG Z H, MENG H W, DU H F, YAO J.Influence of the formula of organic waste substrate from crop production on growth and yield of tomato. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(1): 79-82. (in Chinese )
[9] 刘升学, 于贤昌, 刘伟, 孙晓琦, 艾希珍. 有机基质配方对袋培番茄生长及产量的影响. 西北农业学报, 2009, 3: 184-188.
doi: 10.3969/j.issn.1004-1389.2009.03.041
LIU S X, YU X C, LIU W, SUN X Q, AI X Z.Effect of organic substrate composition on growth and quality of tomato cultivated in bag. Acta Agriculture Borrali-Occidentalis Sinica, 2009, 3: 184-188. (in Chinese)
doi: 10.3969/j.issn.1004-1389.2009.03.041
[10] ZOTARELLI L, DUKES M D, SCHOLBERG J M S, MUNAZ- CARPENA R, ICERMAN J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management, 2009, 96(8): 1247-1258.
doi: 10.1016/j.agwat.2009.03.019
[11] ZOTARELLI L, SCHOLBERG J M, DUKES M D, MUNOZ- CARPENA R, ICERMAN J.Tomato yield, Biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management, 2009, 96(1): 23-34.
doi: 10.1016/j.agwat.2008.06.007
[12] UTTAM K S, ATHANASIOS P P, XIU M H.Irrigation Strategies for Greenhouse Tomato Production on Rockwool. HortScience, 2008, 43(2): 484-493.
doi: 10.1021/jo00328a021
[13] ALBERTOL, HARM B, FRANS H, CAMILO R.Evaluating irrigation Scheduling of hydroponic tomato in Navarra. Spain Irrigation and Drainage, 2003, 52: 177-188.
doi: 10.1002/ird.86
[14] MAHAJAN G, SINGH K G.Response of greenhouse tomato to irrigation and fertigation.Agricultural Water Management, 2006, 84: 202-206.
doi: 10.1016/j.agwat.2006.03.003
[15] 刘炼红, 莫言玲, 杨小振, 李小玲, 吴梅梅, 张显, 马建祥, 张勇, 李好. 调亏灌溉合理滴灌频率提高大棚西瓜产量及品质. 农业工程学报, 2014, 30(24): 95-104.
doi: 10.3969/j.issn.1002-6819.2014.24.012
LIU L H, MO Y L, YANG X Z, LI X L, WU M M, ZHANG X, MA J J, ZHANG Y, LI H.Reasonable drip irrigation frequency improving watermelon yield and quality under regulated deficit irrigation in plastic greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 95-104. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.24.012
[16] SUAT S, AHMET E, IBRAHIM G, CENK K .Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management, 2007, 88: 269-274.
[17] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛. 水肥耦合对番茄光合, 产量及水分利用效率的影响. 农业工程学报, 2014, 30(10): 82-90.
doi: 10.3969/j.issn.1002-6819.2014.10.010
LI J M, PAN T H, WANG L H, DU Q J, CHANG Y B, ZHANG D L, LIU Y.Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 82-90. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.10.010
[18] 李霞, 解迎革, 薛绪掌, 王国栋, 李绍, 陈菲. 不同基质含水量下盆栽番茄蒸腾量、鲜物质积累量及果实产量的差异. 园艺学报, 2010, 37(5): 805-810.
LI X, XIE Y G, XUE X Z, WANG G D, LI S, CHEN F.Difference of transpiration, fresh matter accumulation and fruit yield for potted tomato under moisture content of medium. Acta Horticulturae Sinica, 2010, 37(5): 805-810. (in Chinese)
[19] JONG H S, JUNG E S.Changes in electrical conductivity and moisture content of substrate and their subsequent effects on transpiration rate, water use efficiency, and plant growth in the soilless culture of Paprika (Capsicum annuum L.). Horticulture Environment and Biotechnology, 2015, 56(2): 178-185.
doi: 10.1007/s13580-015-0154-6
[20] 陈秀香, 马富裕, 方志刚, 褚贵新, 杨建荣, 薛琳, 李燕, 王建江.土壤水分含量对加工番茄产量和品质影响的研究. 节水灌溉, 2006(4): 1-4.
doi: 10.3969/j.issn.1007-4929.2006.04.001
CHEN X X, MA F Y, FANG Z G, CHU G X, YANG J R, XUE L, LI Y, WANG J J.Preliminary study on the influence of soil moisture on yield and quality of processed tomato. Water Saving Irrigation, 2006(4): 1-4. (in Chinese)
doi: 10.3969/j.issn.1007-4929.2006.04.001
[21] WAN S Q, KANG Y H.Effect of drip irrigation frequency on radish (Raphanus sativus L.) growth and water use. Irrigation Science, 2006, 24: 161-174.
doi: 10.1007/s00271-005-0005-9
[22] CHARTURONG C, YUTAKA S, TORU M, MICHIKO T, MASAAKI H.Effect of optimization of fertigation management on growth, yield, nitrate and water use efficiency in tomato bag culture based on integrated solar radiation and vapor pressure deficit values. Environmental Control in Biology, 2005, 43(1): 13-20.
doi: 10.2525/ecb.43.13
[23] 曾希柏, 侯光炯, 青长乐, 谢德体. 土壤-植物系统中光照与氮素的相互关系研究. 生态学报, 2000, 20(1): 103-108.
doi: 10.3321/j.issn:1000-0933.2000.01.018
ZENG X B, HOU G J, QING C L, XIE D T.Interrelation of light and nitrogen in soil-plant system. Acta Ecologica Sinica, 2000, 20(1): 103-108. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2000.01.018
[24] 傅国海, 刘文科. 日光温室甜椒起垄内嵌式基质栽培根区温度日变化特征. 中国生态农业学报, 2016, 24(1): 47-55.
FU G H, LIU W K.Diurnal change in root zone temperature of soil ridge substrate-embedded cultivation method for sweet pepper in solar greenhouse. Chinese Journal of Eco-Agriculture, 2016, 24(1): 47-55. (in Chinese )
[25] HUNG T, JONG H S, EUN H N, JUNG E S.Transpiration, growth, and water use efficiency of paprika plants (Capsicum annuum L.) as affected by irrigation frequency. Horticulture Environment and Biotechnology, 2012, 53(2): 129-134.
doi: 10.1007/s13580-012-0095-2
[26] DU W C, JONES R T, STRANG J G, STEGELIN F. Summer Squash Production.UK: College of Agriculture Food and Environment Press, 2004:58-60.
[27] 夏秀波, 于贤昌, 高俊杰. 水分对有机基质栽培番茄生理特性、品质及产量的影响. 应用生态学报, 2007, 18(12): 2710-2714.
doi: 10.7666/d.y1094168
XIA X B, YU C X, GAO J J, Effects of water content on growth, physiological character, yield, fruit quality and water use efficiency of tomato growth in organic substrate. Chinese Journal of Applied Ecology, 2007, 18(12): 2710-2714. (in Chinese)
doi: 10.7666/d.y1094168
[28] 侯加林, 王一鸣, 徐云, 岳俊.番茄生长发育非线性模拟模型. 农业机械学报, 2006, 37(3): 80-84.
doi: 10.3969/j.issn.1000-1298.2006.03.022
HOU J L, WANG Y M, XU Y, YUE J.Simulation mode of tomato growth. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(3): 80-84.(in Chinese)
doi: 10.3969/j.issn.1000-1298.2006.03.022
[29] 张燕, 张富仓, 袁宇霞, 强生才, 房栋平.灌水和施肥对温室滴灌施肥番茄生长和品质的影响.干旱地区农业研究, 2014, 32(2): 206-212.
doi: 10.7606/j.issn.1000-7601.2014.02.033
ZHANG Y, ZHANG F C, YUAN Y X, QIANG S C, FANG D P.The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse. Agricultural Research in the Arid Areas, 2014, 32(2): 206-212. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2014.02.033
[30] NAHAR K, GRETZMACHER R.Effect of water stress on nutrient uptake yield quality of tomato. Bodenkultur, 2002, 53(1): 45-51.
[31] WANG H, ZHANG L, DAWES W R, LIU C.Improving water use efficiency of irrigated crops in the North China Plain—measurements and modeling. Agricultural Water Manage, 2001, 48: 151-167.
doi: 10.1016/S0378-3774(00)00118-9
[32] 刘明池, 张慎好, 刘向莉. 亏缺灌溉时期对番茄果实品质和产量的影响. 农业工程学报, 2005, 21(增刊): 92-95.
LIU M C, ZHANG S H, LIU X L.Effects of different deficit irrigation periods on yield and fruit quality of tomato. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(Suppl.): 92-95. (in Chinese )
[33] 蔡东升, 李建明, 李惠, 胡晓辉, 张钧恒. 营养液供应量对番茄产量、品质和挥发性物质的影响. 应用生态学报, 2018, 29(3): 921-930.
CAI D S, LI J M, LI H, HU X H, ZHANG J H.Effects of nutrient solution supply amount on yield, quality and volatile matter of tomato. Chinese Journal of Applied Ecology, 2018, 29(3): 921-930. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[3] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[10] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[11] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[12] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[13] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[14] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[15] DU Xia,WU Kuo,LIU Xia,ZHANG LiZhen,SU XiaoXia,ZHANG HongRui,ZHANG ZhongKai,HU XianQi,DONG JiaHong,YANG YanLi,GAO YuLin. The Occurrence Trends of Dominant Species of Potato Viruses and Thrips in Yunnan Province [J]. Scientia Agricultura Sinica, 2020, 53(3): 551-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!