Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5266-5276.doi: 10.3864/j.issn.0578-1752.2021.24.009
• HORTICULTURE • Previous Articles Next Articles
WANG Ping(),ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai(
)
[1] |
GAN S, AMASINO R M. Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiology, 1997, 113(2):313-319.
doi: 10.1104/pp.113.2.313 |
[2] | 张金树. 日光温室冬春茬番茄的早衰及预防. 中国蔬菜, 2001, 1(4):42-43. |
ZHANG J S. Premature senescence and its prevention of tomato in greenhouse at winter and spring. China Vegetables, 2001, 1(4):42-43. (in Chinese) | |
[3] | 张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55(7):915-924. |
ZHANG H Z, BAI X Q, ZENG Y L. Biological functions of plant NAC transcription factors. Plant Physiology Journal, 2019, 55(7):915-924. (in Chinese) | |
[4] |
BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23:873-894.
doi: 10.1105/tpc.111.083345 |
[5] |
KIM Y S, SAKURABA Y, HAN S H, YOO S C, PAEK N C. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiology, 2013, 54:1660-1672.
doi: 10.1093/pcp/pct113 |
[6] |
BALAZADEH S, KWASNIEWSKI M, CALDANA C, MEHRNIA M, ZANOR M L, XUE G P, BERND M R. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant, 2011, 4:346-360.
doi: 10.1093/mp/ssq080 |
[7] |
HIRONORI T, KYONOSHIN M, FUMINORI T, MIKI F, TAKUYA Y, KAZUO N, FUMIYOSHI M, KIMINORI T, KAZUKO Y S, KAZUO S. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. The Plant Journal, 2015, 84:1114-1123.
doi: 10.1111/tpj.2015.84.issue-6 |
[8] |
BALAZADEH S, SIDDIQUI H, ALLU A D, MATALLANA- RAMIREZ L P, CALDANA C, MEHRNIA M, ZANOR M I, KOHLER B, MUELLER-ROEBER B. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal, 2010, 62:250-264.
doi: 10.1111/j.1365-313X.2010.04151.x |
[9] |
MAO C J, LU S C, LÜ B, ZHANG B, SHEN J B, HE J M, LUO L Q, XI D D, CHEN X, MING F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology, 2017, 174(3):1747-1763.
doi: 10.1104/pp.17.00542 |
[10] |
FAN K, BIBI N, GAN S S, LI F, YUAN S N, NI M, WANG M, SHEN H, WANG X D. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. Journal of Experimental Botany, 2015, 66:4669-4682.
doi: 10.1093/jxb/erv240 |
[11] | LIRA B S, GRAMEGNA G, TRENCH B A, ALVES F R R, SILVA E M, SILVA G F F, THIRUMALAIKUMAR V P, LUPI A C D, DEMARCO D, PURGATTO E, NOGUEIRA F T S, BALAZADEH S, FRESCHI L, ROSSI M. Manipulation of a senescence-associated gene improves fleshy fruit yield. Plant Physiology, 2017, 175(1):452. |
[12] |
MA X M, ZHANG Y J, TUREČKOVÁ V, XUE G P, FERNIE A R, BERND M R, BALAZADEH S. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiology, 2018, 177(3):1286-1302.
doi: 10.1104/pp.18.00292 |
[13] |
MULLER F, XU J M, KRISTENSEN L, WOLTERS-ARTS M, GROOT P, JANSMA S Y, MARIANI C, PARK S H, RIEU I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS ONE, 2016, 11(12):e0167614.
doi: 10.1371/journal.pone.0167614 |
[14] |
BUCHANAN-WOLLASTON V, PAGE T, HARRISON E, BREEZE E, LIM P O, NAM H G, LIN J F, WU S H, SWIDZINSKI J, ISHIZAKI K, LEAVER C J. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 2005, 42:567-585.
doi: 10.1111/tpj.2005.42.issue-4 |
[15] | KEECH O, PESQUET E, AHAD A, ASKNE A, NORDVALL D, VODNALA S M, TUOMINEN H, HURRY V, DIZENGREMEL P, GARDESTROM P. The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell & Environment, 2007, 30:1523-1534. |
[16] |
PAN C T, YE L, QIN L, LIU X, HE Y J, WANG J, CHEN L F, LU G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 2016, 7:46916.
doi: 10.1038/srep46916 |
[17] |
LEI Y, LU L, LIU H Y, LI S, XING F, CHEN L L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 2014, 7(9):1494-1496.
doi: 10.1093/mp/ssu044 |
[18] |
FILLATTI J J, KISER J, ROSE R, COMAI L. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefacien vector. Nature Biotechnology, 1987, 5:726-730.
doi: 10.1038/nbt0787-726 |
[19] |
KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2002, 25:402-408.
doi: 10.1006/meth.2001.1262 |
[20] |
HELLMAN L M, FRIED M G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols, 2007, 2(8):1849-1861.
doi: 10.1038/nprot.2007.249 |
[21] |
TRAN L S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MATUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, KAZUKO Y S. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16:2481-2498.
doi: 10.1105/tpc.104.022699 |
[22] |
GREGERSEN P L, CULETIC A, BOSCHIAN L, KRUPINSKA K. Plant senescence and crop productivity. Plant Molecular Biology, 2013, 82:603-622.
doi: 10.1007/s11103-013-0013-8 |
[23] |
GUIBOILEAU A, SORMANI R, MEYER C, MASCLAUX- DAUBRESSE C. Senescence and death of plant organs: Nutrient recycling and developmental regulation. Comptes Rendus Biologies, 2010, 333:382-391.
doi: 10.1016/j.crvi.2010.01.016 |
[24] |
LIM P O, KIM H J, NAM H G. Leaf senescence. Annual Review of Plant Biology, 2007, 58:115-136.
doi: 10.1146/arplant.2007.58.issue-1 |
[25] |
BALAZADEH S, RIANO-PACHON D M, MUELLER-ROEBER B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology, 2008, 10(s1):63-75.
doi: 10.1111/plb.2008.10.issue-s1 |
[26] | 杨晓娜, 田云, 卢向阳. NAC转录因子在植物生长发育中的调控作用. 化学与生物工程, 2014, 31(1):1. |
YANG X N, TIAN Y, LU X Y. The regulation role of NAC transcription factors in plant growth and development. Chemistry and Bioengineering, 2014, 31(1):1. (in Chinese) | |
[27] |
KIM H J, NAM H G, LIM P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016, 33:48-56.
doi: 10.1016/j.pbi.2016.06.002 |
[28] | WANG J, ZHENG C F, SHAO X Q, HU Z J, LI J X, WANG P, WANG A R, YU J Q, SHI K. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 209:1-11. |
[29] | 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000(14):1465-1474. |
LIU Q, ZHANG G Y, CHEN S Y. Structure and regulatory function of plant transcription factors. Chinese Science Bulletin, 2000(14):1465-1474. (in Chinese) | |
[30] | GUO Y, CAI Z Y, GAN S S. Transcriptome of Arabidopsis leaf senescence. Plant Cell & Environment, 2004, 27:521-549. |
[31] |
BREEZE E, HARRISON E, MCHATTIE S, HUGHES L, HICKMAN R, HILL C, KIDDLE S, KIM Y S, PENFOLD C A, JENKINS D. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 2011, 23:873-894.
doi: 10.1105/tpc.111.083345 |
[32] |
HE Y H, TANG W N, SWAIN J D, GREEN A L, JACK T P, GAN S S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology, 2001, 126:707-716.
doi: 10.1104/pp.126.2.707 |
[33] |
ZHANG K W, XIA X Y, ZHANG Y Y, GAN S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. The Plant Journal, 2012, 69(4):667-678.
doi: 10.1111/tpj.2012.69.issue-4 |
[1] | SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789. |
[2] | WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718. |
[3] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[4] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[5] | CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377. |
[6] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[7] | FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. |
[8] | LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323. |
[9] | LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. |
[10] | XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028. |
[11] | DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342. |
[12] | ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003. |
[13] | LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550. |
[14] | DU Xia,WU Kuo,LIU Xia,ZHANG LiZhen,SU XiaoXia,ZHANG HongRui,ZHANG ZhongKai,HU XianQi,DONG JiaHong,YANG YanLi,GAO YuLin. The Occurrence Trends of Dominant Species of Potato Viruses and Thrips in Yunnan Province [J]. Scientia Agricultura Sinica, 2020, 53(3): 551-562. |
[15] | ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801. |
|