Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3435-3444.doi: 10.3864/j.issn.0578-1752.2018.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line

YingBin DING1,2(), LiZhen ZHANG1,2, Rui XU2, YanYan WANG2, XiaoMing ZHENG2, LiFang ZHANG2, YunLian CHENG2, Fan WU2, QingWen YANG2(), WeiHua QIAO2(), JinHao LAN1()   

  1. 1College of Agriculture of Qingdao Agricultural University, Qingdao 266109, Shandong
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2018-04-11 Accepted:2018-05-26 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】Fine mapping of a grain length QTL from wild rice using a chromosome segment substitution line and secondary population, exploring new genes affecting grain length and providing genetic materials and gene resources for rice breeding.【Method】Our laboratory had preliminary mapped a grain length related QTL, qGL12 using the chromosome segment substitution line (CSSL) population. On this basis, we choose one CSSL, CSSL141 which harbors qGL12 substitution segment and has significant difference of grain length compared with receptor parent 9311. CSSL141 was backcrossed with 9311. The secondary separation population was constructed for fine mapping of qGL12. Detection of length of glumes cells was performed by scanning electron microscope.【Result】CSSL141 has 4 introgressive segments from wild rice, its grain length, grain width and grain weight was significantly higher than 9311 under multi-conditions. Using CSSL141/9311 F2 population, qGL12 was localized to the interval between RM5479 and RM28621 on chromosome 12. qGL12 affected grain length, grain width and grain weight, and the phenotypic variation explained of grain length was 44.61%. Seven polymorphic molecular marker primers in the location interval were designed, F3 plants which had heterozygous genotype in the target interval were investigated. qGL12 was mapped to a 50 kb region between RM5479 and RM28586. Four polymorphic molecular marker primers were designed in this interval, individuals which harbor heterozygous genotype in this interval were selected for next generation F4. Eventually qGL12 was narrowed to a 15.69 kb region between DYB9.1 and RM28586 on chromosome 12. There are 3 genes in the interval. Two candidate genes, Os12g39650 and Os12g39660, which encode a tubulin protein and a calcium-transporting ATPase respectively, with variations in their coding regions. The results of electron microscopes scanning of glumes cell showed that the length and width of 9311’s glumes cell was smaller than CSSL141, indicated that qGL12 regulate grain size of rice by controlling the size of glumes cells.【Conclusion】The wild rice grain length associated QTL qGL12 was fine mapped to a 15.69 kb region on chromosome12. qGL12 control grain length via regulate the size of glumes cells. Two candidate genes, Os12g39650 and Os12g39660, were found and would be used for further research.

Key words: rice, chromosome segment substitution line, grain size, QTL mapping

Table 1

The primers information of fine mapping"

标记名称
Marker name
标记类型
Marker type
片段大小
Fragment size (bp)
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
DYB1.1 InDel 272 GGAAGGAATCCGCTTTACA GGGAATATTGCAGGGTTGA
DYB6.1 InDel 259 GCCAGAATCTCCACAGATCC GTTTGGTGGGAAGGTCATCT
DYB7.1 InDel 283 GAATCTTTGCAGCTTGGGAA AGGTGGTTTGGGCATAGTGA
DYB9.1 InDel 246 GTTTCAGTTTAGTTTTGGATTGCT TACTCTCTTATTATCAGCCTA

Table 2

Detection of qGL12 under different environments"

位点
QTL
标记
Marker
染色体
Chr.
环境
Environment
LOD
Threshod
LOD 贡献率
PVE (%)
加性效应
Add
2014年南京Nanjing, 2014 3.35 6.40 19.87 0.34
2015年北京Beijing, 2015 3.14 3.24 7.14 0.17
qGL12 RM28621 12 2015年南京Nanjing, 2015 3.41 9.70 24.29 0.32
2015年三亚Sanya, 2015 3.17 5.94 14.85 0.27

Fig. 1

The distribution of substitution segments of CSSL141"

Fig. 2

Comparison of kernel traits between 9311and CSSL141 a: The seeds of 9311 and CSSL141; b: 10 Comparison of grain length; c:Comparison of grain traits under multiple environments. **significantly different at P<0.001"

Fig. 3

Frequency distribution diagram of grain length, grain width and 1000 grain weight in CSSL141/9311 F2 population"

Table 3

Mapping of QTLs associated with grain traits using CSSL141/9311 F2 population"

群体
Population
性状
Trait
染色体
Chr.
标记区间Intervals 南京 Nanjing
左标记
Left marker
右标记
Right marker
LOD 贡献率
PVE (%)
加性
Add
上位性
EPI
粒长Grain length 12 RM5479 RM28621 16.78 44.61 0.20 0.0154
CSSL141 粒宽Grain width 12 RM5479 RM28621 3.60 11.30 0.02 0.0081
千粒重Thousand grain weight 12 RM5479 RM28621 7.35 24.08 0.81 0.3998

Fig. 4

Fine mapping of qGL12"

Fig. 5

The genotype and phenotype of recombinants in the interval of RM5338-RM28642 S: Short Grain; L: Long grain; White region: The genotype of 9311; Black region: The genotype of wild rice; Grey region: Heterozygous genotype. The same as below"

Fig. 6

The genotype and phenotype of recombinants in the interval of RM5479-RM28586"

Fig. 7

Comparison of length of lemma cell a: CSSL141; b: 9311; c: Individual has wild rice genotype in the qGL12 interval; d: Individual has 9311 genotype in the qGL12 interval"

Table 4

Candidate genes of qGL12"

基因名称
Locus name
基因注释
Gene product name
LOC_Os12g39650 微管蛋白Tubulin, putative, expressed
LOC_Os12g39660 质膜钙转运ATP酶Calcium-transporting ATPase, plasma membrane-type, putative, expressed
LOC_Os12g39670 表达蛋白Expressed protein
[1] 景春艳, 张富民, 葛颂. 水稻的起源与驯化——来自基因组学的证据. 科技导报, 2015, 33(16): 27-32.
doi: 10.3981/j.issn.1000-7857.2015.16.003
JING C Y, ZHANG F M, GE S.Genomic evidence of the origin and domestication of Asian cultivated rice (Oryza sativa L.). Science and Technology Review, 2015, 33(16): 27-32. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2015.16.003
[2] KHUSH G S.What it will take to feed 5.0 billion rice consumers in 2030. Piant Molecular Biology, 2005, 59: 1-6.
doi: 10.1007/s11103-005-2159-5
[3] 涂坦, 付洪. 水稻主要粒型基因及其遗传调控的研究进展. 山地农业生物学报, 2016, 35(5): 58-65.
doi: 10.15958/j.cnki.sdnyswxb.2016.05.010
TU T, FU H.Research progress in major genes controlling grain shape of rice and their genetic regulation.Journal of Mountain Agriculture and Biology, 2016, 35(5): 58-65. (in Chinese)
doi: 10.15958/j.cnki.sdnyswxb.2016.05.010
[4] 梁云涛, 潘英华, 徐志健. 利用野栽分离群体定位水稻粒型相关QTL. 西南农业学报, 2017, 30(10): 2161-2167.
LIANG Y T, PAN Y H, XU Z J.QTLs mapping of grain shape of rice by using offspring derived from cross ofOryza rufipogon Griff. and cultivated rice. Southwest China Journal of Agricultural Sciences, 2017, 30(10): 2161-2167. (in Chinese)
[5] 邢永忠, 谈移芳, 徐才国, 华金平, 孙新立. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因. 植物学报, 2001(8): 840-845.
doi: 10.3321/j.issn:1672-9072.2001.08.012
XING Y Z, TAN Y F, XU C G, HUA J P, SUN X L.Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population.Acta Botanica Sinica, 2001(8): 840-845. (in Chinese)
doi: 10.3321/j.issn:1672-9072.2001.08.012
[6] 余守武, 樊叶杨, 杨长登, 李西明. 水稻第1染色体短臂粒长和粒宽QTL的精细定位. 中国水稻科学, 2008(5): 465-471.
doi: 10.3321/j.issn:1001-7216.2008.05.004
YU S W, FAN Y Y, YANG C D, LI X M.Fine mapping of quantitative trait loci for grain length and grain width on the short arm of rice chromosome1. Chinese Journal of Rice Science, 2008(5): 465-471. (in Chinese)
doi: 10.3321/j.issn:1001-7216.2008.05.004
[7] 林鸿宣, 闵绍楷, 熊振民, 钱惠荣, 庄杰云, 陆军, 郑康乐, 黄宁. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位. 中国农业科学, 1995(4): 1-7.
LIN H X, MIN S K, XIONG Z M, QIAN H R, ZHUANG J Y, LU J, ZHENG K L, HUANG N.RFLP mapping of QTLs for grain shape traits in indica rice. Scientia Agricultura Sinica, 1995(4): 1-7. (in Chinese)
[8] 周丽慧, 张亚东, 朱镇, 陈涛, 赵庆勇, 姚姝, 赵凌, 赵春芳, 于新, 王才林. 利用染色体片段置换系群体检测水稻产量相关性状QTL. 江苏农业学报, 2015, 31(1): 1-9.
doi: 10.3969/j.issn.1000-4440.2015.01.001
ZHOU L H, ZHANG Y D, ZHU Z,CHEN T, ZHAO Q Y, YAO S, ZHAO L, ZHAO C F, YU X, WANG C L.Quantitative trait locus detection for rice yield-related traits using chromosome segment substitution lines. Jiangsu Journal of Agricultural Sciences, 2015, 31(1):1-9. (in Chinese)
doi: 10.3969/j.issn.1000-4440.2015.01.001
[9] 朱文银, 杨德卫, 林静, 赵凌, 张亚东, 朱镇, 陈涛, 王才林. 利用染色体片段置换系定位水稻粒型QTL. 江苏农业学报, 2008, 3: 226-231.
ZHU W Y, YANG D W, LIN J, ZHAO L, ZHANG Y D, ZHU Z, CHEN T, WANG C L.Substitution mapping of QTLs for grain shape using chromosome segment substitution lines in rice(Oryza sativa L.). Jiangsu Journal of Agricultural Sciences, 2008, 3: 226-231. (in Chinese)
[10] FAN C C, XING, Y Z, MAO H L, LU T T, HAN B, XU C G, LI X H, ZHANG Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171.
doi: 10.1007/s00122-006-0218-1 pmid: 16453132
[11] HU J, WANG Y X, FANG Y X, ZENG L J, XU J, YU H P.A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant, 2015, 10(8): 1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[12] SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X.A QTL for rice grain width and weight encodes a novel RING-type E3 ubiquitin ligase.Nature Genetics, 2007, 39(5): 623-630.
doi: 10.1038/ng2014 pmid: 17417637
[13] CHE R H, TONG H M, SHI B H, LIU Y Q, FANG S R, LIU D P.Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2015, 2(1): 15195.
[14] QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin- T1; 3.Cell Research, 2012, 22(12): 1666-1680.
doi: 10.1038/cr.2012.151 pmid: 3515756
[15] WENG J F, GU S H, WAN X Y, GAO H, GUO T, SU N, LEI C L, ZHANG X, CHENG Z J, GUO X P, WANG J L, JIANG L, ZHAI H Q, WAN J M.Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.Cell Research, 2008, 18(12): 1199-1209.
[16] LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nature Genetics, 2011, 43(12): 1266-1269.
doi: 10.1038/ng.977 pmid: 20
[17] WANG Y X, XIONG G S, HU J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E B, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q.Copy number variation at the GL7 locus contributes to grain size diversity in rice.Nature Genetics, 2015, 47(8): 944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[18] WANG S K, WU K, YUAN Q B,LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D.Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[19] QI L, SUN Y, LI J, SU L, ZHENG X M, WANG X N, LI K M, YANG Q W, QIAO W H.Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. Breeding Science, 2017, 472: 482.
doi: 10.1270/jsbbs.16082 pmid: 29398941
[20] 朱文银, 王才林. 作物染色体片段置换系研究进展. 江苏农业学报, 2008, 24(6): 963-968.
doi: 10.3969/j.issn.1000-4440.2008.06.048
ZHU W Y, WANG C L.A review on chromosomal segment substitution lines in crops. Jiangsu Journal of Agricultural Sciences, 2008, 24(6): 963-968. (in Chinese)
doi: 10.3969/j.issn.1000-4440.2008.06.048
[21] QIAO W H, QI L, CHENG Z J, SU L, LI J, SUN Y, REN J F, ZHENG X M, YANG Q W.Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. Indica cultivar 9311. BMC Genomics, 2016, 17: 580.
[22] WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D.The OsSPL16—GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Science Foundation in China, 2015, 23(3): 12.
doi: 10.1038/ng.3352 pmid: 26147620
[23] ABE Y, MIEDA K, ANDO T, KONO I, YANO M, KITANO H, IWASAKI Y.The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes & Genetic Systems, 2009, 85(5): 327-339.
doi: 10.1266/ggs.85.327 pmid: 21317545
[24] SEGAMI S, KONO I, ANDO T, YANO M, KITANO H, MIURA K, IWASAKI Y.Small and round seed 5 gene encodes alphatubulin regulating seed cell elongation in rice. Rice, 2012, 5(1): 1-10.
[25] HEANG D, SASSA H.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoS ONE, 2012, 7(2): e31325.
doi: 10.1371/journal.pone.0031325 pmid: 3283642
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!