Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (14): 2664-2674.doi: 10.3864/j.issn.0578-1752.2018.14.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Silicon Application Rate on Common Buckwheat Lodging and Yield

SHE HengZhi, NIE Jiao, LI YingShuang, ZHANG YuKe, HUANG KeHui, ZHANG YuanLi, FANG XiaoMei, RUAN RenWu, YI ZeLin   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2018-01-15 Online:2018-07-16 Published:2018-07-16

Abstract: 【Objective】 This study was aimed to obtain the optimum silicon fertilizer application rate by studying lodging and yield related factors of common buckwheat (F. esculentum), so as to provide a theoretical basis for productive, stable yield and lodging resistance cultivation. 【Method】 The field experiments with five levels of silicon fertilizer treatments (SiO2 application rates of CK, S1, S2, S3 and S4 were 0, 100, 200, 300 and 400 kg·hm-2) were conducted in 2015 and 2016 at the Xiema Experimental Station, Southwest University, China. Ningqiao 1, a moderate lodging resistance cultivar of common buckwheat, was used in this study. The silicon content in root and culm, lodging and yield related factors were measured and analyzed. 【Result】 (1) The silicon content in root was more than that of culm; the silicon content in root increased and then decreased from full bloom to maturity stage, and the maximum value obtained at filling stage. The silicon content in root increased gradually with the increase of silicon application rate. The silicon content in culm increased from full bloom to maturity stage and it was increased and then decreased with the increase of silicon application rate. (2) The total root length, total root surface area, average root diameter and number of root tips increased gradually from full bloom stage to maturity stage. The total root surface area increased with the increase of silicon application rate. The average root diameter and number of root tips increased and then decreased with the increase of silicon application rate, and the maximum value obtained under the S2 treatment. (3) Length, diameter, fresh weight and breaking resistance of the base second internode of culm increased from full bloom to maturity stage. The length and diameter of the base second internode of culm increased with the increase of silicon application rate. The fresh weight and breaking resistance of the base second internode of culm increased and then decreased with the increase of silicon application rate, and the maximum value was obtained under the S3 treatment. (4) The lignin content increased from full bloom to maturity stage. 4CL, PAL, and CAD (4-coumarate: CoA ligase, phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase) activity increased and then decreased from full bloom to maturity stage, and the maximum value obtained at filling stage. The lignin content and 4CL, PAL, CAD activity increased and then decreased with the increase of silicon fertilizer application rate, and the maximum value obtained under the S3 treatment. (5) Silicon fertilizer reduced the lodging degree and decreased the lodging percentage significantly. The lodging stage of common buckwheat occurred at maturity when silicon fertilizer application rate ranged from 300 to 400 kg·hm-2. (6) The yield, grain weight per plant and thousand grain weight increased and then decreased with the increase of silicon fertilizer application rate and grain number per plant increased with the increase of silicon fertilizer application rate. 【Conclusion】 In this research, the best silicon application rate was 300 kg·hm-2.

Key words: common buckwheat, silicon, root, culm, lodging resistance

[1]    董雪妮, 唐宇, 丁梦琦, 未丽, 李金博, 吴燕民, 邵继荣, 周美亮. 中国荞麦种质资源及其饲用价值. 草业科学, 2017, 34(2): 378-388.
DONG X N, TANG Y, DING M Q, WEI L, LI J B, WU Y M, SAHO J R, ZHOU M L. Germplasm resources of buckwheat in China and their forage value. Pratacultural Science, 2017, 34(2): 378-388. (in Chinese)
[2]    姜忠丽, 康艳红, 辛士刚. ICP-AES法测定苦荞麦中的矿物元素. 粮食与饲料工业, 2008(8): 45-46.
JIANG Z L, KANG Y H, XIN S G. Determination of mineral elements in tartary buckwheat by ICP-AES method. Cereal and Feed Industry, 2008(8): 45-46. (in Chinese)
[3]    刘清, 王敏群, 孙丽枫, 王艳. 荞麦不同组成部分中金属元素含量及分析. 中国卫生检验杂志, 2007, 17(7): 1218-1219.
LIU Q, WANG M Q, SUN L F, WANG Y. Analysis of contents of metal elements in different parts of buckwheat. Chinese Journal of Health Laboratory Technology, 2007, 17(7): 1218-1219. (in Chinese)
[4]    石磊, 刘超, 梁霞, 孟婷婷, 周柏玲, 李云龙. 萌发荞麦中芦丁和槲皮素含量变化的研究. 食品研究与开发, 2016, 37(15): 30-33.
SHI L, LIU C, LIANG X, MENG T T, ZHOU B L, LI Y L. Study on the changes of the contents of rutin and quercetin in buckwheat germination. Food Research And Development, 2016, 37(15): 30-33. (in Chinese)
[5]    王勇, 向波, 冼季夏, 江立庚, 张元昶. 水稻抗倒伏研究现状及存在的问题. 广西农业科学, 2007, 38(2): 141-144.
WANG Y, XIANG B, XIAN J X, JIANG L G, ZHANG Y C. Research status and existing problems of rice resistance to lodging. Guangxi Agricultural Sciences, 2007, 38(2): 141-144. (in Chinese)
[6]    KUAI J, SUN Y Y, GUO C, ZHAO L, ZUO Q S, WU J S, ZHOU G S. Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Research, 2017, 200: 88-97.
[7]    刘星贝, 吴东倩, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 袁晓辉, 易泽林. 喷施烯效唑对甜荞茎秆抗倒性能及产量的影响. 中国农业科学, 2015, 48(24):4903-4915.
LIU X B, WU D Q, WANG C, HU D, YANG H, SHE H Z, RUAN R W, YUAN X H, YI Z L. Effects of spraying uniconazole on lodging resistance of culm and yield in common buckwheat. Scientia Agricultura Sinica, 2015, 48(24): 4903-4915. (in Chinese)
[8]    刘星贝, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 吴东倩, 易泽林. 烯效唑干拌种对甜荞茎秆抗倒性能的影响. 作物学报, 2016, 42(1): 93-103.
LIU X B, WANG C, HU D, YANG H, SHE H Z, RUAN R W, WU D Q, YI Z L. Effects of seed dressing with uniconazole powder on lodging resistance of culm in common buckwheat. Acta Agronomica Sinica, 2016, 42(1): 93-103. (in Chinese)
[9]    ZHANG Y X, SU S N, MIRKO T, YU J J, DENISE C, BAHRAM B, WANG X L, MA B L, LI C Y, SHAHROKH K. Effect of selected plant growth regulators on yield and stem height of spring wheat in Ontario. Journal of Agricultural Science, 2017, 9(12): 30-42.
[10]   范存留, 杨国涛, 范永义, 易军, 韦叶娜, 敬银钦, 赵祥, 胡运高. 钾、硅肥处理对杂交水稻Ⅱ优838抗倒伏性的作用研究. 云南大学学报(自然科学版), 2015, 37(4): 623-632.
FAN C L, YANG G T, FAN Y Y, YI J, WEI Y N, JING Y Q, ZHAO X, HU Y G. Effect of potassium and silicon fertilizer treatments on lodging resistance of hybrid rice Ⅱ You 838. Journal of Yunnan University(natural sciences Edition), 2015, 37(4): 623-632. (in Chinese)
[11]   陈健晓, 屠乃美, 易镇邪, 朱红林. 硅肥对超级早稻茎叶形态与抗倒伏特性的影响. 作物研究, 2011, 25(3): 209-212.
CHEN J X, TU N M, YI Z X, ZHU H L. Effects of silicon fertilizer on morphology of stem and leaves and lodging resistance in early super hybrid rice. Crop Research, 2011, 25(3): 209-212. (in Chinese)
[12]   牟英辉, 陈志梁, 程艳波, 年海, 李秀平. 硅肥对大豆农艺性状、产量及品质的影晌. 大豆科学, 2012, 31(4): 626-629.
MU Y H, CHEN Z L, CHENG Y B, NIAN H, LI X P. Effects of silicon fertilization on agronomic traits, yield and quality of soybean. Soybean Science, 2012, 31(4): 626-629. (in Chinese)
[13]   WANG C, RUAN R W, YUAN X H, HU D, YANG H, LI Y, YI Z L. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Production Science, 2015, 18(2): 218-227.
[14]   汪灿, 李曼, 王诗雪, 胡丹, 杨浩, 阮仁武, 袁晓辉, 易泽林. 不同播期、播种量和施肥量对甜荞信农1号春播产量及农艺性状的影响. 贵州农业科学, 2014, 42(3): 52-55.
WANG C, LI M, WANG S X, HU D, YANG H, RUAN R W, YUAN X H, YI Z L. Effects of different sowing date, seeding rate and fertilization on yield and agronomic traits of Fagopyrum esculentum Xinnong 1 planted in spring. Guizhou Agricultural Sciences, 2014, 42(3): 52-55. (in Chinese)
[15]   汪灿, 阮仁武, 袁晓辉, 王诗雪, 李蔓, 易泽林. 不同荞麦品种抗倒伏能力与根系及茎秆性状的关系. 西南大学学报(自然科学版), 2015, 37(1):65-71.
WANG C, RUAN R W, YUAN X H, WANG S X, LI M, YI Z L. Relationship between root and stem traits and lodging resistance in different buckwheat cultivars. Journal of Southwest University (Natural Science Edition), 2015, 37(1): 65-71. (in Chinese)
[16]   汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40(10): 1846-1856.
WANG C, RUAN R W, YUAN X H, HU D, YANG H, LIN T T, HE P L, LI Y, YI Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agronomica Sinica, 2014, 40(10): 1846-1856. (in Chinese)
[17]   戴伟民, 张克勤, 段彬伍, 孙成效, 郑康乐, 蔡润, 庄杰云. 测定水稻硅含量的一种简易方法. 中国水稻科学, 2005, 19(5): 460-462.
DAI W M, ZHANG K Q, DUAN B W, SUN C X, ZHENG K L, CAI R, ZHUANG J Y. Rapid determination of silicon content in rice (Oryza sativa). Chinese Journal of Rice Science, 2005, 19(5): 460-462. (in Chinese)
[18]   乔春贵. 作物抗倒伏性的综合指标—倒伏指数. 吉林农业大学学报, 1988, 10(1): 7-10.
Qiao C G. Lodging index—a synthetic indication of lodging resistance. Journal of Jilin Agricultral University, 1988, 10(1): 7-10. (in Chinese)
[19]   LAVINSKY A O, DETMANN K C, RELS J V, AVLLA R T, SANGLARD M L, PEREIRA L F, SANGLARD L M V P, RODRIGUES F A, AVAUJO W L, DAMATTA F M. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. Journal of Plant Physiology, 2016, 206: 125-132.
[20]   MUHAMMAD I, MUHAMMAD S R, MUHAMMAD A M, MUHAMMAD A, SHER M S, BALAL Y, DAWOOD A S, MUHAMMAD R, MUHAMMAD A N, SAJID M, TU S X. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. Journal of Environmental Management, 2016, 183: 521-529.
[21]   EMANUEDL E. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the USA, 1994, 91(1): 11-17.
[22]   杜彩琼, 林克惠. 硅素营养研究进展. 云南农业大学学报, 2002, 17(2): 192-196.
DU C Q, LIN K H. Research advance of silicon nutrition. Journal of Yunnan Agricultural University, 2002, 17(2): 192-196. (in Chinese)
[23]   于立河. 不同肥密及硅肥对黑龙江春小麦产量与品质形成的调控效应[D]. 呼和浩特: 内蒙古农业大学, 2012.
YU L H. Regulatory effects of fertilization population and silicon fertilizer on yield and quality of spring wheat in Heilongjiang[D]. Hohhot: Inner Mongolia Agricultural University, 2012. (in Chinese)
[24]   FALLAH A. Silicon effect on lodging parameters of rice plants under hydroponic culture. International Journal of AgriScience,2012, 2(7): 630-634.
[25]   何巧林, 张绍文, 李应洪, 谯晶, 孙永健, 马均. 硅钾配施对水稻茎秆性状和抗倒伏能力的影响. 杂交水稻, 2017, 32(1): 66-73.
HE Q L, ZHANG S W, LI Y H, QIAO J, SUN Y J, MA J. Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice. Hybrid Rice, 2017, 32(1): 66-73. (in Chinese)
[26]   GONG H J, CHEN K M, CHEN G C, WANG S M, CHANG C L. Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 2003, 26(5): 1055-1063.
[27]   LIU S Q, SONG F B, LIU F L, ZHU X C, XU H B. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.). Journal of Agricultural Science, 2012, 4(12): 182-189.
[28]   BIAN D H, JIA G P, CAI L J, MA Z Y, ENEJI E, CUI Y H. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Research, 2016, 185: 89-96.
[29]   刘唐兴, 官春云. 不同密度的油菜根系特征和产量与倒伏之间的相关性初探. 西南农业学报, 2008, 21(1): 23-25.
LIU T X, GUAN C Y. Preliminary studies on relationship between root morphological traits, yield per plant and lodging in Brassica napus L. Southwest China Journal of Agricultural Sciences, 2008, 21(1): 23-25. (in Chinese)
[30]   杨罗锦, 陶洪斌, 王璞. 种植密度对不同株型玉米生长及根系形态特征的影响. 应用与环境生物学报, 2012, 18(6): 1009-1013.
YANG L J, TAO H B, WANG P. Effect of planting density on plant growth and root morphology of maize. Chinese Journal of Applied and Environmental Biology, 2012, 18(6): 1009-1013. (in Chinese)
[31]   DEIVASEENO D, MOHD R I. Distribution of silicified microstructures, regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol mediated Oryza sativa. Frontiers in Physiology, 2017, 8(491): 1-19.
[32]   胡丹, 刘星贝, 汪灿, 杨浩, 李鹤鑫, 阮仁武, 袁晓辉, 易泽林. 不同抗倒性甜荞茎秆木质素合成关键酶基因的表达分析. 中国农业科学, 2015, 48(9): 1864-1872.
HU D, LIU X B, WANG C, YANG H, LI H X, RUAN R W, YUAN X H, YI Z L. Expression analysis of key enzyme genes in lignin synthesis of culm among different lodging resistances of common buckwheat (Fagopyrum esculentum Moench). Scientia Agricultura Sinica, 2015, 48(9): 1864-1872. (in Chinese)
[33]   HU D, LIU X B, SHE H Z, GAO Z, RUAN R W, WU D Q, YI Z L. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biologia Plantarum, 2017, 61(1): 138-146.
[34]   邹俊林, 刘卫国, 袁晋, 蒋涛, 叶素琴, 邓榆川, 杨晨雨, 罗玲, 杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系. 作物学报, 2015, 41(7): 1098-1104.
ZOU J L, LIU W G, YUAN J, JIANG T, YE S Q, DENG Y C, YANG C Y, LUO L, YANG W Y. Relationship between lignin synthesis and lodging resistance at seedlings stage in soybean intercropping system. Acta Agronomica Sinica, 2015, 41(7): 1098-1104. (in Chinese)
[35]   郎有忠, 杨晓东, 王美娥, 朱庆森. 结实阶段不同时期倒伏对水稻产量及稻米品质的影响. 中国水稻科学, 2011, 25(4): 407-412.
LANG Y Z, YANG X D, WANG M E, ZHU Q S. Effects of lodging at different filling stages on rice grain yield and quality. Chinese Journal of Rice Science, 2011, 25(4): 407-412. (in Chinese)
[36]   曹品伟, 赵美玲, 王建华, 赵正龙. 不同时期的倒伏对玉米产量的影响. 黑龙江农业科学, 2014(4): 38-39.
CAO P W, ZHAO M L, WANG J H, ZHAO Z L. Effect of lodging on maize yield in different stages. Heilongjiang Agricultural Sciences, 2014(4): 38-39. (in Chinese)
[37]   黄迎光, 郑以宏, 袁永胜, 井淑香, 张宾. 倒伏时期和倒伏程度对小麦产量的影响. 山东农业科学, 2014, 46(6): 51-53, 58.
HUANG Y G, ZHENG Y H, YUAN Y S, JING S X, ZHANG B. Effects of lodging period and degree on wheat yield. Shandong Agricultural Sciences, 2014, 46(6): 51-53, 58. (in Chinese)
[38]   王艳红, 邓国季, 戴鹏, 吴奇伟, 马锦绣, 周昆. 喷施叶面硅肥对Y两优143产量的影响. 杂交水稻, 2017, 32(4): 51-53.
WANG Y H, DENG G J, DAI P, WU Q W, MA J X, ZHOU K. Effect of foliar application of silicon fertilizer on yield of Y Liangyou 143. Hybrid Rice, 2017, 32(4): 51-53. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[4] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[5] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[6] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[7] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[10] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[11] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[12] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[13] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[14] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[15] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!