Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (11): 2126-2135.doi: 10.3864/j.issn.0578-1752.2018.11.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Applying Biochar-Based Fertilizer and Biochar on Organic Carbon Fractions and Contents of Brown Soil

GAO MengYu, JIANG Tong, HAN XiaoRi, YANG JinFeng   

  1. College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory of High Efficient Use on Soil and Fertilizer Resources/Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, Shenyang 110866
  • Received:2017-06-28 Online:2018-06-01 Published:2018-06-01

Abstract: 【Objective】 As an essential indicator of soil quality, soil organic carbon and its fractions play an important role in land productive capacity and crop yield. Based on a 4-year long-term experiment, effects of Biochar-based fertilizer and Biochar treatments on the contents of total organic carbon and its fractions in Brown soil were analyzed to provide scientific basis for controls of soil fertility and organic carbon management. 【Method】 Since 2011, a field experiment was conducted with five different fertilizing treatments: no fertilizer (CK), low amount biochar (C15), high amount biochar (C50), chemical fertilizer (NPK), and biochar-based fertilizer (BBF). Among them, C15 and BBF had the same level of carbon content, and NPK and BBF had the same level of nutrient. At the 4th year (autumn 2014), soil samples at 0-20 cm depth of different fertilization treatments were collected after harvest. Contents of soil total organic carbon, its fractions and peanuts yield were determined by chemical analysis. 【Result】 The results showed that compared with initial soil, soil total organic carbon content (TOC) was significantly increased by 10% and 8% under the biochar-based fertilizer and biochar treatment, respectively. It was increased from 2% to 15% (in biochar-based fertilizer treatment) under the same level carbon or NPK nutrition input. Soil free particulate organic carbon (FPOC) and soil occluded particulate organic carbon (OPOC) contents were significantly increased by applying biochar-based fertilizer or biochar. Compared with the same level carbon input treatments, FPOC and OPOC increased was 43% and 17% by applying biochar-based fertilizer, respectively; compared with the same level NPK nutrition input treatments, FPOC and OPOC increased was 40% and 43%, respectively. Soil mineral organic carbon (MOC) content was increased slightly in all fertilizer treatments, but the difference was not significant. Soil dissolved organic carbon (DOC) content was significantly increased under biochar-based fertilizer and biochar treatments, but there was no significant difference between them. The peanut yield of continuous application of fertilization was199.4-232.9 kg/667m2, which was higher than no fertilizer treatment. The peanut yield was the highest when BBF was applied in soil and obviously higher than C15 and NPK treatment 17% and 10%, respectively. 【Conclusion】 Soil total organic carbon, FPOC, OPOC contents were significant increased by applying biochar-based fertilizer or biochar for more years, and the increasing amount under biochar-based fertilizer treatment was more than that under same amount carbon or NPK nutrition input. Soil DOC content was also increased, but there was no significant difference between same amount carbon and NPK nutrition input. Soil MOC content was not affected by applying biochar or fertilizer. The effect of improving peanuts yield was the best when BBF continuously was applied in soil, and it was better than the same level of nutrient treatment and the same level of carbon treatment.

Key words: biochar-based fertilizer, biochar, organic carbon fractions, Brown soil, peanut

[1]    康熙龙, 张旭辉, 张硕硕, 郑聚锋, 李恋卿, 刘晓雨, 潘根兴. 旱地土壤施用生物质炭的后效应——水分条件对土壤有机碳矿化的影响. 土壤, 2016, 48(1): 152-158.
KANG X L. ZHANG X H, ZHANG S S, ZHEN J F, LI L Q, LIU X Y, PAN G X. Effects of biochar application history on soil: effect of moisture regime on dynamics of soil organic carbon mineralization. Soils, 2016, 48(1): 152-158. (in Chinese)
[2]    曹志洪, 朱永官, 廖海秋, 吴留松. 苏南稻麦两熟制下土壤养分平衡与培肥的长期试验. 土壤, 1995, 2(2): 60-63.
CAO Z H, ZHU Y G, LIAO H Q, WU L S. Soil nutrient balance and improving fertility of rice-wheat double cropping system in the Sunan South under long-term experiment. Soils, 1995, 2(2): 60-63. (in Chinese)
[3]    陈温福, 张伟明, 孟军, 徐正进. 生物炭应用技术研究. 中国工程科学, 2011, 13(2): 83-89.
CHEN W F, ZHANG W M, MENG J, XU Z J. Researches on biochar application technology. Engineering Sciences, 2011, 13(2): 83-89. (in Chinese)
[4]    ZWIETEN L V, KIMBER S, MORRIS S, CHAN K Y, DOWNIE A, RUST J, JOSEPH S D, COWIE A L. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327: 235-245.
[5]    LEHMANN J, GAUNT J, RONDON M. Biochar sequestration in terrestrial ecosystems- a review. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427.
[6]    王义祥, 黄毅斌, 叶菁, 王成己, 翁伯琦, 应朝阳. 水保措施对油桃园土壤有机碳库及其组分的影响. 农业环境科学学报, 2014, 33(4): 803-809.
WANG Y X, HUANG Y B, YE J, WANG C J, WENG B Q, YING Z Y. Effects of different soil conservation measures on soil organic carbon pools in nectarine orchard. Journal of Agro-Environment Science, 2014, 33(4): 803-809. (in Chinese)
[7]    张丽敏, 徐明岗, 娄翼来, 王小利, 秦松, 蒋太明, 李忠芳.长期施肥下黄壤性水稻土有机碳组分变化特征. 中国农业科学, 2014, 47(19): 3817-3825.
ZHANG L M, XÜ M G, LOU Y L, Wang X L, QIN S, JIANG T M, LI Z F. Changes in yellow paddy soil organic carbon fractions under long-term fertilization. Scientia Agricultura Sinica, 2014, 47(19): 3817-3825. (in Chinese)
[8]    王月玲, 周凤, 张帆, 马武功, 王强, 曹胜磊, 耿增超. 施用生物炭对土壤呼吸以及土壤有机碳组分的影响, 环境科学研究, 2017, 30(6): 920-928.
WANG Y L, ZHOU F, ZHANG F, MA W G, WANG Q, CAO S L, GENG Z C. Influence of biochae on soil respiration and soil organic carbon fractions. Research of Environmental Science. 2017, 30(6): 920-928. (in Chinese)
[9]    韩玮, 申双和, 谢祖彬, 李博, 李玉婷, 刘琦. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响. 生态学报, 2016, 26(18): 5838-5846.
HAN W, SHEN S H, XIE Z B, LI B, LI YT, LIU Q. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil. Acta Ecologica Sinca, 2016, 26(18): 5838-5846. (in Chinese)
[10]   李有兵, 余玲, 李硕, 田霄鸿. 作物残体与其生物炭配施对土壤有机碳及其自身矿化率的提升. 植物营养与肥料学报, 2015, 21(4): 943-950.
LI Y B, YU L, LI S, TIAN X H. Combined addition of crop residues and their biochar increase soil organic C content and mineralization rate. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 943-950. (in Chinese)
[11]   DEMISIE W, LIU Z Y, ZHANG M K. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 2014, 121: 214–221.
[12]   EYKELBOSHA A J , JOHNSON M S, COUTO E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. Journal of Environmental Management, 2015,149: 9-16.
[13]   潘全良, 宋涛, 陈坤, 徐晓楠, 彭靖, 战秀梅, 王月, 韩晓日. 连续6年施用生物炭和炭基肥对棕壤生物活性的影响, 华北农学报, 2016, 31(3): 225-232.
PAN Q L, SONG T, CHEN K, XU X N, PENG J, ZHAN X M, WANG Y, HAN X R. Influences of 6 years application of biochar and biochar based compound fertilizer on soil bioactivity on brown soil. Acta Agriculturae Boreali-Sinica, 2016, 31(3): 225-232. (in Chinese)
[14]   战秀梅, 彭靖, 王月, 刘轶飞, 陈坤, 韩晓日, 王恒飞, 蔺文成, 李喜研. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用, 植物营养与肥料学报, 2015, 21(6) :1633-1641.
ZHAN X M. PENG J, WANG Y, LIU Y F, CHEN K, HAN X R, WANG H F, LIN W C, LI X Y. Influence of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1633-1641.(in Chinese)
[15]   韩晓日, 苏俊峰, 谢芳, 高晓宁, 杨劲峰, 赖鸿雁. 长期施肥对棕壤有机碳及各组分的影响. 土壤通报, 2008, 39(4): 730-733.
HAN X R, SU J F, XIE F, GAO X N, YANG J F, LAI H Y. Effect of long- term fertilization on organic carbon and the different soil organic fractions of brown earth. Chinese Journal of Soil Science, 2008, 39(4): 730-733. (in Chinese)
[16]   匡崇婷, 江春玉, 李忠佩, 胡 锋. 添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响,土壤, 2012, 44 (4): 570-575.
KUANG C T, JIANG C Y, LI Z P, HU F. Effects of biochar amendments on soil organic carbon mineralization and microbial biomass in red paddy soils, Soils. 2012, 44 (4): 570-575. (in Chinese)
[17]   李江舟, 代快, 张立猛, 计思贵, 乔志新. 施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响. 环境科学学报, 2016, 36(6): 2114-2120,
LI J Z, DAI K, ZHANG L M, JI S G, QIAO Z X, Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area. Acta Scientiae Circumstantiae, 2016, 36(6): 2114-2120. (in Chinese)
[18]   张杰, 黄金生, 刘佳, 刘荣乐. 秸秆、木质素及其生物炭对潮土CO2释放及有机碳含量的影响. 农业环境科学学报, 2015, 34(2): 401-408.
ZHANG J, HUANG J S, LIU J, LIU R L. Carbon dioxide emissions and organic carbon contents of fluvo-aquic soil as influenced by straw and lignin and their biochars. Journal of Agro-Environment Science, 2015, 34(20): 401-408. (in Chinese)
[19]   刘园, Khan J M, 靳海洋, 白雪莹, 谢迎新, 赵旭, 王慎强, 王晨阳. 秸秆生物炭对潮土作物产量和土壤性状的影响. 土壤学报, 2015, 34(2): 849-858.
LIU Y, KHAN J M, JIN H Y, BAI X Y, XIE Y X, ZHAO X, WANG S Q, WANG C Y. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols. Acta Pedologica Sinca, 2015, 34(2): 401-408. (in Chinese)
[20]   付琳琳, 蔺海红, 李恋卿, 郑金伟, 郑聚锋, 张旭辉, 俞欣妍, 王家芳, 潘根兴. 生物质炭对稻田土壤有机碳组分的持效影响. 土壤通报, 2013(6): 1379-1384.
FU L L, LIN H H, LI L Q, ZHEN J W, ZHEN J F, ZHANG X H, YU X Y, WANG J F, PAN G X. Effects of biochar application on organic carbon fractions of paddy soil. Chinese Journal of Soil Science, 2013(6): 1379-1384. (in Chinese)
[21]   侯晓娜, 李慧, 朱刘兵, 韩燕来, 唐政, 李忠芳, 谭金芳, 张水清. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响. 中国农业科学, 2015, 48(4): 705-712.
HOU X N, LI H, ZHU L B, HAN Y L, TANG Z, LI Z F, TAN J F, ZHANG S Q. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015, 48(4): 705-712. (in Chinese)
[22]   王福平, 依艳丽, 解宏图, 张玉兰, 赵晓霞, 宣然然, 叶佳舒, 董智, 张旭东. 生物炭添加对潮棕壤土壤性状及玉米生长的影响. 玉米科学, 2015, 23(5): 83-90.
WANG F P, YI Y L , XIE H T, ZHANG Y L, ZHAO X X, XUAN R R, YE J S, DONG Z, ZHANG X D. Effects of biochar amendment on soil properties and corn growth in aquic brown soil. Journal of Maize Sciences, 2015, 23(5): 83-90. (in Chinese)
[23]   柯跃进, 胡学玉, 易卿, 余忠. 水稻秸秆生物炭对耕地土壤有机碳及其CO2释放的影响. 环境科学, 2014, 35(1): 93-99.
KE Y J, YUAN H X, YI Q, YU Z. Impacts of rice straw biochar on organic carbon and CO2 release in arable soil. Environmental Science, 2014, 35(1): 93-99. (in Chinese)
[24]   SIX J, ELLIOT E T, PAUSTIAN K J. DORDAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62: 1367-1377.
[25]   WANDER M M, YANG X M. Influence of tillage on the dynamics of loose- and occluded-particulate and humified organic matter fractions. Soil Biology and Biochemistry, 2000, 32: 1151-1160.
[26]   KOLBL A, KOGELKNABNER I. Content and composition of free and occluded particulate organic matter in a differently textured arable cambisol as revealed by solid-state 13C NMR spectroscopy. Journal of Soil Science and Plant Nutrition, 2004, 167: 45-53.
[27]   LU S B, CHEN C R, ZHOU X Q, XU Z H, BACON H, RUI Y C, GUO X M. Responses of soil dissolved organic matter to long-term plantations of three coniferous tree species. Geoderma, 2012, 170 (3) :136-143.
[28]   杨放, 李心清, 王兵, 程建中. 生物炭在农业增产和污染治理中的应用. 地球与环境, 2012, 40(1): 100-107.
YANG F, LI X Q, WANG B, CHENG J Z. The application of biochar to improving agricultural production and pollution abatement. Earth and Environment, 2012, 40(1): 100-107. (in Chinese)
[29]   LEHMANN J, RILLIG, M C, THIES J, MASIELLO C A, HOCKADAY W C, CROWLEY D. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836.
[30]   SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration, Soil Biology and Biochemistry, 2010, 42(12): 2345-2347.
[31]   LAIRD D A, FLEMING P, DAVIS D D, HORTON R, WANG B Q, KARLEN D L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158(3/4): 443-449.
[32]   CAMBARDELLAC A, ELLIOTT E T. Particulate soil organic matter change across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56: 777-783.
[33]   WANDER M M, BIDART M G, ATEF S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soil. Soil Science Society of America Journal, 1998, 62(6): 1704-1711.
[34]   KOLBL A, KOGELKNABNER I. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisolas revealed by solid-state 13C NMR spectroscopy. Plant Nutrition and Soil Science, 2004, 167: 45-53.
[35]   尚杰, 耿增超, 陈心想, 赵军, 耿荣, 王森. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响. 农业环境科学学报, 2015, 34(3): 509-517.
SHANG J, GENG Z C, CHEN X X, ZHAO J, GENG R, WANG S. Effects of biochar on soil organic carbon and nitrogen and their fractions in a rainfed farmland. Journal of Agro-Environment Science, 2015, 34(3): 509-517. (in Chinese)
[36]   MCHENRY M P. Soil organic carbon, biochar and applicable research results for increasing farm productivity under Australian agricultural conditions. Communications in Soil Science and Plant Analysis, 2011, 42(10): 1187-1199.
[37]   樊廷录, 王淑英, 周广业, 丁宁平. 长期施肥下黑垆土有机碳变化特征及碳库组分差异. 中国农业科学, 2013, 46(2): 300-309.
FAN T L, WANG S Y, ZHOU G Y, DING N P. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of loess plateau in China. Scientia Agricultura Sinica, 2013, 46(2): 300-309. (in Chinese)
[38]   王朔林, 王改兰, 赵旭, 陈春玉, 黄学芳. 长期施肥对栗褐土有机碳含量及其组分的影响. 植物营养与肥料学报, 2015, 21(1): 104-111.
WANG S L, WANG G L, ZHAO X, CHEN C Y, HUANG X F. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 104-111. (in Chinese)
[39]   DAVIDSON E A, TRUMBORE S E, AMUNDSON R. Biogeochemistry: soil warming and organic carbon content. Nature, 2000, 408(6814): 789-790.
[40]   HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 1997, 191(1): 77-87.
[41]   俞元春, 李淑芬. .江苏下蜀林区土壤溶解有机碳与土壤因子的关系. 土壤, 2003, 35(5): 424-428.
YU Y C, LI S F. Correlations between dissolved organic carbon (DOC) and some other factors of forest soils in Xiashu, Jiangsu. Soils, 2003, 35(5): 424-428. (in Chinese)
[42]   王玲莉, 韩晓日, 杨劲峰,王晔青, 马玲玲, 娄翼来. 长期施肥对棕壤有机碳组分的影响. 植物营养与肥料学报, 2008, 14(1): 79-83.
WANG L L, HAN X R, YANG J F, WANG Y Q, MA L l, Lou Y L. Effect of long-term fertilization on organic carbon fractions in a brown soil. Plant Nutrition and Fertilizer Science, 2008, 14(1): 79-83. (in Chinese)
[43]   陈高起, 傅瓦利, 沈艳, 伍宇春, 胡宁,文志林. 岩溶区不同土地利用方式对土壤有机碳及其组分的影响. 水土保持学报, 2015, 29(3): 123-129.
CHEN G Q, FU W L, SHEN Y, WU Y C, HU N, WEN Z L. Effects of land use types on soil organic and its fractions in karst area. Journal of Soil and Water Conservation, 2015, 29(3): 123-129. (in Chinese)
[44]   王清奎, 汪思龙, 冯宗炜, 黄宇. 土壤活性有机质及其与土壤质量的关系. 生态学报, 2005, 25(3): 513-519.
WANG Q K, WANG S L, FENG Z W, HUANG Y. Active soil organic matter and its relationship with soil quality. Acta Ecologica Sinica, 2005, 25(3): 513-519. (in Chinese)
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[7] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[8] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[9] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[10] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[11] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[12] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[13] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[14] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[15] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!