Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1878-1889.doi: 10.3864/j.issn.0578-1752.2018.10.007

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Grain Dehydration Characters of Summer Maize and Its Relationship with Grain Filling

LuLu LI(), Bo MING(), Shang GAO, RuiZhi XIE, Peng HOU, KeRu WANG(), ShaoKun LI()   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
  • Received:2017-06-15 Accepted:2017-12-05 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Nowadays, the higher grain moisture content at harvest limits the popularization and application of the mechanical grain harvesting technology. Maize grain filling process is accompanied by grain dehydration process after pollination, however, the relationship between these two processes remains a challenge. We used different maize cultivars to study the characters of the two processes and the relationships between them, which provided support for breeding and promotion of the harvesting technology. 【Method】 Field experiments were conducted in Xinxiang, Henan in 2015 and 2016. A total of 22 cultivars were studied and the controlled pollination was applied in every cultivar. In 2015, the sampling time was from the 26th day after pollination to November 14th. In 2016, the sampling time was from 11th day after pollination to October 17th. We measured dynamic changes of grain moisture content (MC), moisture (M), dry weight (DW) and fresh weight (FW) before and after physiological maturity to establish the relationships between these indexes and the accumulated temperature after pollination (T) by equations. Based on these equations, the grain dehydration process and the filling process were clarified. Then, we developed the relationship between these two processes by the correlation analysis. 【Result】 Results showed that T had the significant non-linear relationships with MC, M, DW and FW. Among them, the relationship between MC and T of 22 maize cultivars could be described by the Logistic Power regression model. The MC dropped to 28% when the T reached average 1 357°C·d, changing from 1 126 °C·d to 1 646 °C·d between cultivars. The average T was 1 480°C·d for 25% MC, changing from 1 218 °C·d to 1 810 °C·d. Dynamic change of MC could be divided into two stages based on the changes of DW and M. The first stage was from the start of grain growth to the end of linear filling process, in which the decreasing MC was mainly decided by the fast dry matter accumulation. The second stage followed the former ending to the harvest time, in which the decreasing MC was owned to the decreasing M. The correlation analysis showed that there was a significant negative correlation between the MC at physiological maturity and the filling days, and the T from pollination to physiological maturity in 2015 while the relationship was not significant in 2016. There was no significant relationship between the filling rate and the grain dehydration rate before physiological maturity, similar to the grain dehydration rate after physiological maturity and the total dehydration rate. 【Conclusion】 Our study found that the Logistic Power regression model had a good predictive stability to establish the relationship between MC and T. We proposed that MC was decided by the grain filling rate and the grain moisture loss rate respectively at different stages. Thus, breeders should not only pay attention to grain filling characters and maturity time, but also concern about the grain dehydration characters when evaluate suitable cultivars for the harvesting technology.

Key words: maize, grain filling, grain dehydration, grain moisture content, Logistic Power model

Table 1

Experimental treatment"

年份
Year
试验处理
Experimental treatment
玉米品种名称
Maize Cultivar
2015 6月16日播种,随机区组设计,每品种3次重复,小区长8 m,宽5.4 m,面积43.2 m2
Sowing on 16 June; Randomized block design with three replications; The plots were 8 m long and 5.4 m wide and had an area of 43.2 m2
郑单958、先玉335、农华101、农华816、京农科728、中单909、宁玉721、联创808、裕丰303、中科玉505、禾田1号
ZD958, XY335, NH101, NH816, JNK728, ZD909, NY721, LC808, YF303, ZKY505, HT1
2016 6月4日播种,大区种植,每区长18 m,宽7.8 m,面积140.4 m2
Sowing on 4 June; Big plots; The plots were 18 m long and 7.8 m wide and had an area of 140.4 m2
郑单958、先玉335、农华101、农华816、京农科728、中单909、华美1号、真金323、新单58、新单65、辽单575、锦华318、锦华207、金通152、迪卡517、陕单636、丰垦139
ZD958, XY335, NH101, NH816, JNK728, ZD909, HM1, ZJ323, XD58, XD65, LD575, JH318, JH207, JT152, DK517, SD636, FK139

Table 2

Growth stages of maize cultivars"

年份
Year
品种
Cultivar
出苗
Emergence (M-D)
吐丝
Silking
(M-D)
授粉
Pollination (M-D)
生理成熟
Physiological maturity
授粉-生理成熟天数
Days from pollination to physiological maturity (d)
授粉-生理成熟积温
Accumulated temperature from pollination to physiological maturity (℃·d)
2015 JNK728 6-23 8-7 8-9 9-28 50 1200
NH816 6-23 8-10 8-12 10-8 57 1316
NH101 6-23 8-9 8-12 10-11 60 1365
ZD909 6-23 8-9 8-12 10-15 64 1439
ZD958 6-23 8-9 8-10 10-14 65 1475
XY335 6-23 8-9 8-10 10-14 65 1475
YF303 6-23 8-9 8-10 10-18 69 1553
NY721 6-23 8-10 8-13 10-19 67 1485
LC808 6-23 8-10 8-12 10-15 64 1439
ZKY505 6-23 8-10 8-13 10-15 63 1410
HT1 6-23 8-3 8-6 9-23 48 1166
2016 JNK728 6-9 7-26 7-26 9-12 48 1291
NH816 6-9 7-29 7-29 9-20 53 1389
NH101 6-9 7-28 7-28 9-20 54 1421
ZD909 6-9 7-30 7-31 9-28 59 1501
ZD958 6-9 7-31 7-31 9-28 59 1501
XY335 6-9 7-30 7-30 9-26 58 1490
DK517 6-9 7-28 7-28 9-21 55 1443
ZJ323 6-9 7-29 7-29 9-20 53 1389
SD636 6-9 7-26 7-26 9-19 55 1459
LD575 6-9 7-29 7-29 9-20 53 1389
HM1 6-9 7-25 7-25 9-13 50 1344
FK139 6-9 7-23 7-24 9-5 43 1179
JT152 6-9 7-29 7-29 9-23 56 1457
JH207 6-9 7-29 7-29 9-23 56 1457
JH318 6-9 7-28 7-28 9-26 60 1553
XD65 6-9 7-28 7-28 9-19 53 1400
XD58 6-9 7-25 7-25 9-15 52 1394

Fig. 1

Prediction model of grain moisture content of different cultivars"

Table 3

Fitting results of Logistic Power model in different maize cultivars"

年份
Year
品种
Cultivar
b c R2 授粉—28%含水率积温
Accumulated temperature from pollination to 28% MC (℃·d)
授粉—25%含水率积温
Accumulated temperature from pollination to 25% MC (℃·d)
2015 HT1 811.189 2.337 0.962** 1140 1221
ZKY505 877.380 1.993 0.984** 1307 1417
LC808 895.960 1.943 0.986** 1349 1465
NY721 892.299 1.682 0.968** 1431 1575
YF303 950.148 1.769 0.985** 1489 1630
2016 FK139 836.987 1.829 0.994** 1293 1411
DK517 838.297 1.833 0.989** 1293 1412
JH207 851.805 1.834 0.986** 1314 1434
HM1 915.269 2.121 0.992** 1331 1436
XD65 843.911 1.742 0.995** 1332 1461
JT152 908.628 1.961 0.986** 1363 1479
XD58 881.079 1.750 0.994** 1388 1521
LD575 884.834 1.750 0.986** 1394 1528
ZJ323 899.704 1.770 0.988** 1410 1544
SD636 936.666 1.921 0.984** 1417 1540
JH318 920.968 1.770 0.994** 1443 1580
2015-2016 JNK728 834.19 1.952 0.993** 1253 1361
NH101 904.387 2.029 0.993** 1338 1448
XY335 886.981 1.879 0.982** 1354 1475
NH816 903.747 1.944 0.989** 1360 1477
ZD958 896.136 1.612 0.988** 1467 1621
ZD909 925.174 1.687 0.986** 1482 1630

Fig. 2

Relationship between predicted value and observed value of grain moisture content at physiological maturity"

Fig. 3

Prediction model of grain moisture content of all testing cultivars"

Table 4

Maize grain moisture content and the related accumulated temperature after pollination (°C·d)"

数值范围 Value range 28%含水率 28%MC 25%含水率 25%MC 20%含水率 20%MC 15%含水率 15%MC
预测值 Predicted value 1357 1480 1738 2107
95%置信区间上限Upper bound of 95% confidence interval 1646 1810 2159 2672
95%置信区间下限 Lower bound of 95% confidence interval 1126 1218 1405 1665

Fig. 4

Maize grain moisture, fresh weight and dry weight change with the accumulated temperature after pollination"

Table 5

Correlation analysis of dehydration parameters and filling parameters of maize"

年份 授粉-生理 授粉-生理 生理成熟期含水率 收获期含水率 生理成熟期 平均灌浆速率 生理成熟前平均 生理成熟后平均 总脱水
Year 成熟天数 成熟积温 MC at physiological maturity MC at 百粒干重 Average 脱水速率 脱水速率 速率
Days from pollination to physiological maturity Accumulated temperature from pollination to physiological maturity harvest 100-kernel dry weight at physiological maturity filling rate Average dehydration rate before physiological maturity Average dehydration rate after physiological maturity Total dehydration rate
授粉-生理成熟天数 2015 1 0.995** -0.815** 0.192 0.785** -0.273 -0.940** -0.800** -0.942**
Days from pollination to physiological maturity 2016 1 0.991** -0.309 -0.248 0.642** 0.176 -0.794** 0.06 -0.696**
授粉-生理成熟积温 2015 1 -0.810** 0.194 0.791** -0.269 -0.943** -0.806** -0.950**
Accumulated temperature 2016 1 -0.356 -0.299 0.589* 0.107 -0.773** 0.067 -0.677**
from pollination to physiological maturity
生理成熟期含水率 2015 1 0.317 -0.906** -0.193 0.577 0.620* 0.627*
MC at physiological 2016 1 0.843** -0.418 -0.304 -0.316 0.055 -0.274
maturity
收获期含水率 2015 1 -0.23 -0.610* -0.433 -0.477 -0.432
MC at harvest 2016 1 -0.283 -0.163 -0.271 -0.411 -0.407
生理成熟期百粒干重 2015 1 0.374 -0.595 -0.53 -0.617*
100-kernel dry weight at physiological maturity 2016 1 0.866** -0.301 0.046 -0.212
平均灌浆速率 2015 1 0.492 0.345 0.455
Average filling rate 2016 1 0.114 0.004 0.161
生理成熟前平均脱水 2015 1 0.768** 0.979**
速率 2016 1 -0.092 0.879**
Average dehydration
rate before physiological maturity
生理成熟后平均脱水 2015 1 0.866**
速率 2016 1 0.368
Average dehydration rate after physiological maturity
总脱水速率 2015 1
Total dehydration rate 2016 1
[1] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4):116-119.
LIU F H, WANG K R, LI J, WANG X M, SUN Y L, CHEN Y S, WANG Y H, HAN D S, LI S K.Factors affecting corn mechanically harvesting grain quality. Crops, 2013(4): 116-119. (in Chinese)
[2] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆.黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014(2): 76-79.
XIE R Z, LEI X P, WANG K R, GUO Y Q, CHAI Z W, HOU P, LI S K.Research on corn mechanically harvesting grain quality in Huanghuaihai Plain. Crops, 2014(2): 76-79. (in Chinese)
[3] FILIPENCO A, MANDACHE V, VALSAN G, IVAN F, CIOCAZANU I.Inheritance of grain dry-down in corn (Zea mays L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 2013, 70(1): 223-226.
[4] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50(11): 2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
WANG K R, LI S K.Progresses in research on grain broken rate by mechanical grain harvesting.Scientia Agricultura Sinica, 2017, 50(11): 2018-2026. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[5] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K.Current status of maize mechanical grain harvesting and its relationship with grain moisture content.Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[6] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11): 2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
LI L L, LEI X P, XIE R Z, WANG K R, HOU P, ZHANG F L, LI S K.Analysis of influential factors on mechanical grain harvest quality of summer maize.Scientia Agricultura Sinica, 2017, 50(11): 2044-2051. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.010
[7] 宋松泉, 程红焱, 姜孝成. 种子生物学. 第一版.北京: 科学出版社, 2008.
SONG S Q, CHENG H Y, JIANG X C. Seed Biology.1st edition. Beijing: Science Press, 2008. (in Chinese)
[8] 伍贤进, 宋松泉, 张素平, 傅家瑞. 玉米种子萌发能力和耐脱水能力的形成. 热带亚热带植物学报, 2002, 10(2): 177-182.
doi: 10.3969/j.issn.1005-3395.2002.2.012
WU X J, SONG S Q, ZHANG S P, FU J R.Formation of desiccation tolerance and germinability during development of Zea mays L. seeds. Journal of Tropical and Subtropical Botany, 2002, 10(2): 177-182. (in Chinese)
doi: 10.3969/j.issn.1005-3395.2002.2.012
[9] MAIORANO A, FANCHINI D, DONATELLI M.MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels.European Journal of Agronomy, 2014, 59: 86-95.
[10] BROOKING I R.Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying.Field Crops Research, 1990, 23(1): 55-68.
doi: 10.1016/0378-4290(90)90097-U
[11] 申琳. 夏玉米籽粒灌浆与籽粒含水率的关系及籽粒发育过程的分期. 北京农业科学, 1998, 16(5): 6-9.
SHEN L.Relationship between grain filling and grain moisture content and staging of grain development in summer maize.Beijing Agricultural Sciences, 1998, 16(5): 6-9. (in Chinese)
[12] CRANE P L.Factors associated with varietal differences in rate of field drying in corn.Agronomy Journal, 1959, 51(6): 318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[13] MA B L, DWYER L M.Maize kernel moisture, carbon and nitrogen concentrations from silking to physiological maturity.Canadian Journal of Plant Science, 2001, 81(2): 225-232.
[14] 李德新. 玉米籽粒灌浆、脱水速率品种差异和相关分析[D]. 北京: 中国农业科学院, 2009.
LI D X.Varieties and correlation analysis of grain filling and dehydration rate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[15] 孙月轩, 姜先梅, 张作木, 单玉清, 鲍继友, 孙顶太. 夏玉米灌浆与温度、籽粒含水率关系的初步探讨. 玉米科学, 1994, 2(1): 54-58.
SUN Y X, JIANG X M, ZHANG Z M, SHAN Y Q, BAO J Y, SUN D T.Preliminary study on relationship between grain filling and temperature and grain moisture content of summer maize.Maize Sciences, 1994, 2(1): 54-58. (in Chinese)
[16] 乔江方, 李川, 刘京宝, 谷利敏, 夏来坤, 朱卫红, 黄璐, 薛华政. 不同自然脱水类型玉米品种子粒含水率变化与灌浆动态的关系. 玉米科学, 2015, 23(5): 96-101.
QIAO J F, LI C, LIU J B, GU L M, XIA L K, ZHU W H, HUANG L, XUE H Z.Relationship between grain water content and seed filling dynamic of different types of natural dehydration maize varieties.Journal of Maize Sciences, 2015, 23(5): 96-101. (in Chinese)
[17] 武维华. 植物生理学. 第二版. 北京: 科学出版社, 2008.
WU W H. Plant Physiology.2nd edition. Beijing: Science Press, 2008. (in Chinese)
[18] 荆彦平. 小麦和玉米颖果的生长及胚乳细胞的发育[D]. 扬州: 扬州大学, 2014.
JING Y P.The caryopsis growth and the endosperm cell development in wheat and maize[D]. Yangzhou: Yangzhou University, 2014. (in Chinese)
[19] DAYNARD T B.Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn.Agronomy Journal, 1972, 64(6): 716-719.
doi: 10.2134/agronj1972.00021962006400060003x
[20] RUSSELLE M P, WILHELM W W, OLSON R A, POWER J F.Growth analysis based on degree days.Crop Science, 1984, 24(1): 28-32.
doi: 10.2135/cropsci1984.0011183X002400010007x
[21] CROSS H Z, ZUBER M S.Prediction of flowering dates in maize based on different methods of estimating thermal units.Agronomy Journal, 1972, 64(3): 351-355.
doi: 10.2134/agronj1972.00021962006400030029x
[22]
[23] 郭庆辰, 康浩冉, 王丽娥, 刘洪泉, 陈艳花, 白光红, 窦秉德. 黄淮区籽粒机收玉米标准及育种模式探讨. 农业科技通讯, 2016(1): 159-162.
doi: 10.3969/j.issn.1000-6400.2016.01.053
GUO Q C, KANG H R, WANG L E, LIU H Q, CHEN Y H, BAI G H, DOU B D.The standard of corn grain mechanical harvest and breeding mode in Huang-Huai Region. Bulletin of Agricultural Science and Technology, 2016(1): 159-162. (in Chinese)
doi: 10.3969/j.issn.1000-6400.2016.01.053
[24] CROSS H Z.Leaf expansion rate effects on yield and yield components in early maturing maize.Crop Science, 1991, 31(3): 579-583.
doi: 10.2135/cropsci1991.0011183X003100030006x
[25] SCHMIDT J L, HALLAUER A R.Estimating harvest date of corn in the field.Crop Science, 1966, 6(3): 227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[26] 向葵. 玉米籽粒脱水速率测定方法优化及遗传研究[D]. 雅安: 四川农业大学, 2011.
XIANG K.Genetic analysis and measuring method development of kernel fast dry down rate in maize[D]. Ya’an: Sichuan Agricultural University, 2011. (in Chinese)
[27] CUTFORTH H W, SHAYKEWICH C F.A temperature response function for corn development.Agricultural and Forest Meteorology, 1990, 50(3): 159-171.
doi: 10.1016/0168-1923(90)90051-7
[28] DWYER L M, STEWART D W, CARRIGAN L, MA B L, NEAVE P, BALCHIN D.A general thermal index for maize.Agronomy Journal, 1999, 91(6): 940-946.
doi: 10.2134/agronj1999.916940x
[29] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11): 2052-2060.
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K.Corn kernel weight and moisture content after physiological maturity in field.Scientia Agricultural Sinica, 2017, 50(11): 2052-2060. (in Chinese)
[30] GAMBIN B L, BORRAS L, OTEGUI M E.Kernel water relations and duration of grain filling in maize temperate hybrids.Field Crops Research, 2007, 101(1): 1-9.
doi: 10.1016/j.fcr.2006.09.001
[31] MISEVIC D, ALEXANDER D E, DUMANOVIC J, KERECKI B, RATKOVIC S.Grain moisture loss rate of high-oil and standard-oil maize hybrids.Agronomy Journal, 1988, 80(5): 841-845.
doi: 10.2134/agronj1988.00021962008000050032x
[32] 张立国, 张林, 管春云, 金益, 王振华, 任晓亮, 宫纪娟. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析. 东北农业大学学报, 2007, 38(5): 582-585.
ZHANG L G, ZHANG L, GUAN C Y, JIN Y, WANG Z H, REN X L, GONG J J.Correlation analysis on dry-down rate and quality traits in corn after physiological maturity.Journal of Northeast Agricultural University, 2007, 38(5): 582-585. (in Chinese)
[33] MATHRE D E, JOHNSTON R H, MARTIN J M.Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species. Euphytica, 1985, 34(2): 419-424.
[34] 张立国, 范骐骥, 陈喜昌, 李波, 张宇, 修丽丽. 玉米生理成熟后籽粒脱水速率与主要农艺性状的相关分析 . 黑龙江农业科学, 2012(3): 1-5.
doi: 10.3969/j.issn.1002-2767.2012.03.001
ZHANG L G, FAN Q J, CHEN X C, LI B, ZHANG Y, XIU L L.Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity.Heilongjiang Agricultural Sciences, 2012(3): 1-5. (in Chinese)
doi: 10.3969/j.issn.1002-2767.2012.03.001
[35] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期籽粒含水率研究. 作物杂志, 2017(2): 88-92.
doi: 10.16035/j.issn.1001-7283.2017.02.015
LI L L, XIE R Z, WANG K R, MING B, HOU P, LI S K.Study on kernel moisture content of summer maize at physiological maturity in Huanghuaihai Region.Crops, 2017(2): 88-92. (in Chinese)
doi: 10.16035/j.issn.1001-7283.2017.02.015
[36] 魏亚萍, 王璞, 陈才良. 关于玉米粒重的研究. 植物学通报, 2004, 21(1): 37-43.
doi: 10.3969/j.issn.1674-3466.2004.01.005
WEI Y P, WANG P, CHEN C L.Studies on the grain weight in maize.Chinese Bulletin of Botany, 2004, 21(1): 37-43. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2004.01.005
[37] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15 000 kg·ha-1以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40(9): 1898-1906.
doi: 10.3321/j.issn:0578-1752.2007.09.008
HUANG Z X, WANG Y J, WANG K J, LI D H, ZHAO M, LIU J G, DONG S T, WANG H J, WANG J H, YANG J S.Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg·ha-1.Scientia Agricultural Sinica, 2007, 40(9): 1898-1906. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.09.008
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[13] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[14] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[15] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!