Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (9): 1735-1745.doi: 10.3864/j.issn.0578-1752.2018.09.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Vanillic Acid on Seed Germination, Seedling Growth and Rhizosphere Microflora of Peanut

HUANG YuQian1, YANG JinFeng1, LIANG ChunHao2, CHEN ShenPingYi1, LIU XinYu1, GENG KeRui1, YAO YuChen1, ZHANG Yu1, HAN XiaoRi1   

  1. 1 College of Land and Environment, Shenyang Agricultural University, Shenyang 110866; 2 Plant Protection Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
  • Received:2017-06-29 Online:2018-05-01 Published:2018-05-01

Abstract: 【Objective】 Experiments were carried out to investigate the autotoxicity of vanillic acid and its effect on seed germination and seedling growth of peanut, so as to reveal the response rules of rhizosphere microbes to the autotoxic substances in peanut growth period.【Method】Peanut (Arachis hypogaea L. cv Fuhua 12 150GY ) was used in this study, and petri dish method, nursery pot and pot culture experiment were adopted to explore the effect of vanillic acid on the peanut seed germination, seedling growth and rhizosphere microflora. Six vanillic acid application treatments in petri dish experiment were set with application of different vanillic acid amounts: 0, 0.01, 0.03, 0.05, 0.07, 0.09 mmol·L-1, five treatments in nursery pot experiment were 0, 0.01, 0.03, 0.05, 0.07 mmol·L-1, and five treatments in pot culture experiment were 0, 0.01, 0.03, 0.05, 0.07 mg·kg-1 dry soil.【Result】(1) The seed germination ratio, germination energy and germination index were lower than CK after treatment with different concentrations of vanillic acid. When the concentration of vanillic acid was 0.09 mmol·L-1, the seed germination ratio, germination energy and germination index respectively decreased by 39%, 66.3% and 55.9% compared with CK, and the response index (RI) reached the maximum. (2) The root length, plant dry weight, chlorophyll content, net photosynthetic rate and stomatal conductance were lower than CK after treatment with different concentrations of vanillic acid. When the concentration of vanillic acid was 0.07 mmol·L-1, all above indexes decreased by 37.3%, 40.0%, 19.0%, 53.9% and 49.1%, respectively, compared with CK, and the response index (RI) reached the maximum. Conversely, the intercellular CO2 concentration was the opposite of the above indexes, it went up with the increase of the concentration of vanillic acid. When the concentration of vanillic acid was 0.07 mmol·L-1, the intercellular CO2 concentration increased by 46.1% compared with CK. (3) when the concentration of vanillic acid ≥0.03 mmol·L-1, the total absorption area, active absorption area and root activity were lower than CK, while the MDA content were higher than CK. When the concentration of vanillic acid was 0.07 mmol·L-1, all above indexes respectively decreased by 22.4%, 54.2% and 40.6% compared with CK, the MDA content increased by 43.3%. (4) The number of rhizosphere actinomycetes were markedly reduced with the increase of vanillic acid concentration at the early stage of peanut, and the differences between the treatments were not significant at the late stage of peanut. The number of bacteria in different treatments were not significant difference at the early stage of peanut, and it substantially reduced with the increase of vanillic acid concentration at the late stage. A high concentration of vanillic acid (0.07 mg·kg-1 dry soil) had inhibitory effect on rhizosphere fungal growth, and low concentration of vanillic acid (0.01 mg·kg-1 dry soil) had a promoting effect of fungal growth. 【Conclusion】 Vanillic acid had a significant autotoxinc-effect, which inhibited the photosynthesis of peanut seedling, reduced the root activity and promoted seedling leaf malondialdehyde. In addition, the number of rhizosphere bacteria and actinomycetes decreased after treated with vanillic acid, indicating that vanillic acid inhibited the growth of rhizosphere bacteria and actinomycetes; while it promoted the growth of rhizosphere fungi at low concentration but inhibited the growth at high concentration.

Key words: vanillic acid, peanut, autotoxic substances, photosynthetic characterization, root activity, microflora

[1]    马寅斐, 何东平, 王文亮, 刘丽娜, 徐同成, 陶海腾, 杜方岭. 我国花生产业的现状分析. 农产品加工学刊, 2011(7):122-124.
MA Y F, HE D P, WANG W L, LIU L N, XU T C, TAO H T, DU F L. Status analysis of peanut industry in China. Academic periodical of Farm Products Processing, 2011(7): 122-124. (in Chinese)
[2]    郑亚萍, 王才斌, 黄顺之, 吴正锋. 花生连作障碍及其缓解措施研究进展. 中国油料作物学报, 2008, 30(3): 384-388.
ZHENG Y P, WANG C B, HUANG S Z, WU Z F. Research on relieving peanut continuous cropping stress. Chinese Journal of Oil Crop Sciences, 2008, 30(3): 384-388. (in Chinese)
[3]    万书波, 刘苹, 郭峰.花生连作障碍机理研究进展//2010中国作物学会学术年会论文摘要集, 2010: 136.
WANG S B, LIU P, GUO F. Studies on the mechanism of peanut continuous cropping obstacle//China Crop Science Society the Academic Conference Paper Sets, 2010: 136. (in Chinese)
[4]    喻景权, 杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 2000, 31(1): 124-126.
YU J Q, DU Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables. Journal of Shenyang Agricultural University, 2000, 31(1): 124-126. (in Chinese)
[5]    吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施. 东北农业大学学报, 2000, 31(3): 241-247.
WU F Z, ZHAO F Y, LIU Y Y. On the reasons of continuous cropping obstacles in vegetable facility gardening. Journal of Northeast Agricultural University, 2000, 31(3): 241-247. (in Chinese)
[6]    韩丽梅, 沈其荣, 鞠会艳, 阎石, 阎飞. 大豆地上部水浸液的化感作用及化感物质的鉴定. 生态学报, 2002, 22(9): 1425-1432.
HAN L M, SHEN Q R, JU H Y, YAN S, YAN F. Allelopathy of the aqueous extracts of above ground parts of soybean and the identification of the allelochemicals. Acta Ecologica Sinica, 2002, 22(9): 1425-1432. (in Chinese)
[7]    NOGUCHI H K, INO T. Assessment of allelopathic potential of root exudate of rice seedlings. Biologia Plantarum, 2001, 44(4): 635-638.
[8]    KONG C H, LI H B, HU F, XU X H, WANG P. Allelochemicals released by rice roots and residues in soil. Plant and Soil, 2006, 288: 47-56.
[9]    WU H W, JIM P, DEIRDRE L, AN M, LIU D L. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant and Soil, 2007, 296: 85-93.
[10]   YU J Q, MATSUI Y. Effects of root exudates of cucumber (Cucumis sativus L. ) and allelochemicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology, 1997, 23(3): 817-827.
[11]   BLOK W J, BOLLEN G J. The role of autotoxins from root residues of the previous crop in the replant disease of asparagus. Netherlands Jorunal of Plant Pathology, 1993(3): 29-40.
[12]   WITTENMAYER L, SZABO K. The role of root exudates in specific apple (Malus×domestica Borkh) replant disease(SARD). Soil Science and Plant Nutrition, 2000, 163: 399-404.
[13]   HE C N, GAO W W, YANG J X, BI W, ZHANG X S, ZHAO Y J. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L.. Plant and Soil, 2009, 318: 63-72.
[14]   刘苹, 赵海军, 万书波, 江丽华, 于淑芳, 杨力, 王艳芹, 李瑾. 花生根系分泌物自毒作用研究. 中国油料作物学报, 2010, 32(3): 431-435.
LIU P, ZHAO H J, WAN S B, JIANG L H, YU S F, YANG L, WANG Y Q, LI J. Autotoxic potential of peanut (Arachis hypogaes) root exudates. Chinese Journal of Oil Sciences, 2010, 32(3): 431-435. (in Chinese)
[15]   刘苹, 王梅, 杨力, 于淑芳, 万书波. 花生根系腐解物对根腐镰刀菌和固氮菌的化感作用研究. 安徽农业科学, 2011, 39(35): 21701-21703.
LIU P, WANG M, YANG L, YU S F, WAN S B. Study on allelopathy of decayed peanut root on root rot fungi and N-fixing bacteria. Journal of Anhui Agricultural Science, 2011, 39(35): 21701-21703. (in Chinese)
[16]   刘苹,高新昊, 孙明, 张英鹏, 仲子文, 万书波, 李彦. 3种酚酸类物质对花生发芽和土壤微生物的互作效应研究. 江西农业学报, 2012, 24(8): 85-87.
LIU P, GAO X H, SUN M, ZHANG Y P, ZHONG Z W, WAN S B, LI Y. Interactive effects of three kinds of phenolic acids on peanut germination and soil microbes. Acta Agriculturae Jiangxi, 2012, 24(8): 85-87. (in Chinese)
[17]   李培栋, 王兴祥, 李奕林, 王宏伟, 梁飞燕, 戴传超. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用. 生态学报, 2010, 30(8): 2128-2134.
LI P D, WANG X X, LI Y L, WANG H W, LIANG F Y, DAI C C. The contents of phenolic acids in continuous cropping peanut and their allelopathy. Acta Ecologica Sinica, 2010, 30(8): 2128-2134. (in Chinese)
[18]   黄玉茜, 韩立思, 杨劲峰, 王月, 韩晓日. 花生植株和土壤水浸液自毒作用研究及土壤中自毒物质检测. 生态学报, 2012, 32(19): 6023-6032.
HUANG Y Q, HAN L S, YANG J F, WANG Y, HAN X R. Autotoxicity of aqueous extracts from plant, soil of peanut and identification of autotoxic substances in rhizospheric soil. Acta Ecologica Sinica, 2012, 32(19): 6023-6032. (in Chinese)
[19]   中国科学院土壤研究所微生物室. 土壤微生物研究法. 北京: 科学出版社, 1985.
Institute of Soil Microorganisms, Chinese Academy of Sciences. Soil Microbial Method. Beijing: Science Press, 1985. (in Chinese)
[20]   刘文龙, 王凯荣, 王铭伦. 花生对镉胁迫的生理响应及品种间差异. 生态学报, 2009, 20(2): 451-459.
LIU W L, WANG K R, WANG M L. A physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress. Chinese Journal of Applied Ecology, 2009, 20(2): 451-459. (in Chinese)
[21]   郝建军, 刘延吉. 植物生理学试验技术. 沈阳: 辽宁科技出版社, 2001: 178-190.
HAO J J, LIU Y J. Plant Physiology Experiment Technology. Shenyang: Liaoning Science And Technology Press, 2001: 178-190. (in Chinese)
[22]   徐瑞富, 王小龙. 花生连作田土壤微生物群落动态与土壤养分关系研究. 花生学报, 2003, 32(3): 19-24.
XU R F, WANG X L. Relation of microbial population dynamics and nutrient in soil of continuous cropping with peanut. Journal of Peanut Science, 2003, 32(3): 19-24. (in Chinese)
[23]   LARKIN R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology and Biochemistry, 2003, 35: 1451-1466.
[24]   WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: measuring treatment responses with independent controls. Journal of Chemical Ecology, 1988, 14(1): 181-187.
[25]   LI P D, DAI C C, WANG X X. Variation of soil enzyme activities and microbial community structure in peanut monocropping system in subtropical China. African Journal of Agricultural Research, 2012, 7(12): 1870-1879.
[26]   HUANG L F, SONG L X, XIA X J, MAO W H, SHI K, ZHOU Y H, YU J Q. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. Journal of Chemical Ecology, 2013, 39(2): 232-242.
[27]   BONANOMI G, ANTIGNANI V, BARILE E, ZOLFAGHARI B, SAJJADI S E, SCALA F, LANZOTTI V. Decomposition of medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases. Journal of Plant Pathology, 2011, 93(1): 57-69.
[28]   朱虹, 王宏伟, 杜威, 戴传超. 内生真菌重组漆酶rLACB3修复花生连作土壤. 生态学杂志, 2014, 33(7): 1920-1927.
ZHU H, WANG H W, DU W, DAI C C. Potential role of the endopytic fungus laccase rLACB3 in the bioremediation of peanut continuous cropping soil. Chinese Journal of Ecology, 2014, 33(7): 1920-1927. (in Chinese)
[29]   刘娟, 张俊, 臧秀旺, 汤丰收, 董文召, 苗利娟, 徐静, 张忠信. 花生连作障碍与根系分泌物自毒作用的研究进展. 中国农学通报, 2015, 31(30): 101-105.
LIU J, ZHANG J, ZANG X W, TANG F S, DONG W Z, MIAO L J, XU J, ZHANG Z X. Research advances in continuous cropping obstacles and root exudates autotoxicity of peanut. Chinese Agricultural Science Bulletin, 2015, 31(30): 101-105. (in Chinese)
[30]   谢星光, 戴传超, 苏春沦, 周佳宇, 王宏伟, 王兴祥. 内生真菌对花生残茬腐解及土壤酚酸含量的影响. 生态学报, 2014, 35(11): 3836-3845.
XIE X G, DAI C C, SU C L, ZHOU J Y, WANG H W, WANG X X. Effects of an endophytic fungus on decay of peanut residues and phenolic acid concentrations in soil. Acta Ecologica Sinica, 2014, 35(11): 3836-3845. (in Chinese)
[31]   ABENAVOLI M R, DE SANTIS C, SIDARI M, SORGONÀ A, BADIANI M, CACCO G. Influence of coumarin on the net nitrate uptake in durum wheat. New phytologist, 2001, 3: 619-627.
[32]   GAO X B, ZHAO F X, SHEN X, HU Y L, HAO Y H, YANG S Q, SU L T, MAO Z Q. Effects of cinnamon acid on respiratory rate and its related enzymes activity in roots of seedlings of Malus hupehensis Rehd. Journal of Integrative Agriculture, 2010, 9(6): 833-839.
[33]   董章杭, 林文雄. 作物化感作用研究现状及前景展望. 中国生态农业学报, 2001, 9(1): 80-83.
DONG Z H, LIN W X. Current status and prospects of allelopathy research in agriculture. Chinese Journal of Eco-Agriculture, 2001, 9(1): 80-83. (in Chinese)
[34]   袁云云, 咸洪泉, 洪永聪, 辛伟, 崔德杰. 花生根系分泌物的鉴定及其化感效应分析. 花生学报, 2011, 40(3): 24-29.
YUAN Y Y, XIAN H Q, HONG Y C, XIN W, CUI D J. Identification of peanut root exudates and the analysis of its allelopathy effect. Journal of Peanut Science, 2011, 40(3): 24-29. (in Chinese) 
[35]   邵庆勤, 杨安中, 何克勤. 酚酸类物质对野燕麦萌发及幼苗生长的影响. 中国农学通报, 2009, 25(7): 158-161.
SHAO Q Q, YANG A Z, HE K Q. The effects of phenolic acids on germination of the wild oat and growth of seedling. Chinese Agricultural Science Bulletin, 2009, 25(7): 158-161. (in Chinese)
[36]   宋亮, 潘开文, 王进闯, 马玉红. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 26(10): 3393-3403.
SONG L, PAN K W, WANG J C, MA Y H. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecologica Sinica, 2006, 26(10): 3393-3403. (in Chinese)
[37]   龙期良, 李勇, 高原, 丁万隆. 酚酸类物质对人参种子的化感作用研究. 中国现代中药, 2016, 18(1): 92-95.
LONG Q L, LI Y, GAO Y, DING W L. Allelopathy of phenolic compounds on Panax ginseng seeds. Modern Chinese Medicine, 2016, 18(1): 92-95. (in Chinese)
[38]   顾元, 常志州, 于建光, 宗良纲. 外源酚酸对水稻种子和幼苗的化感效应. 江苏农业学报, 2013, 29(2): 240-246.
GU Y, CHANG Z Z, YU J G, ZONG L G. Allelopathic effects of exogenous phenolic acids composted by wheat straw on seed germination and seedling growth of rice. Jiangsu Journal of Agricultural Sciences, 2013,29(2): 240-246. (in Chinese)
[39]   张恩平, 张文博, 张淑红, 李亮亮, 李天来. 苯甲酸和肉桂酸对番茄幼苗根部保护酶及膜质过氧化的影响. 西北农业学报, 2010, 19 (1): 186 -190.
ZHANG E P, ZHANG W B, ZHANG S H, LI L L, LI T L. Effects of exogenic benzoic acid and cinnamic acid on the root oxidative damage of tomato seedlings. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(1): 186-190. (in Chinese)
[40]   尹承苗, 胡艳丽, 王功帅, 张先富, 周慧, 沈向, 陈学森, 毛志泉. 苹果连作土壤中主要酚酸类物质对平邑甜茶幼苗根系的影响. 中国农业科学, 2016, 49(5): 961-969.
YIN C M, HU Y L, WANG G S, ZHANG X F, ZHOU H, SHEN X, CHEN X S, MAO Z Q. Effect of main phenolic acids of the apple replanted soil on the roots of Malus hupehensis Rehd. seedlings. Scientia Agricultura Sinica, 2016, 49(5): 961-969. (in Chinese)
[41]   WEIR T, PARK S W, VIVANCO J. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 2004, 7: 472-479.
[42]   QU X H, WANG J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Applied Soil Ecology, 2008, 39: 172-179.
[43]   谭秀梅, 王华田, 孔令刚, 王延平. 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响. 山东大学学报(理学版), 2008, 43(1): 14-19.
TAN X M, WANG H T, KONG L G, WANG Y P. Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes. Journal of Shandong University (Natural Science), 2008, 43(1): 14-19. (in Chinese)
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[4] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[5] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[6] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[7] FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning [J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
[8] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[9] JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
[10] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[11] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[12] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[13] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!