Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1167-1181.doi: 10.3864/j.issn.0578-1752.2018.06.015

• HORTICULTURE • Previous Articles     Next Articles

Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops

GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang   

  1. College of Horticulture, China Agricultural University/Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Beijing 100193
  • Received:2017-07-21 Online:2018-03-16 Published:2018-03-16

Abstract: As an important economic crop, acreage, yield and demand of vegetable have been increased in recent years. Vegetables are inescapably affected by abiotic stresses including drought, salt, extreme temperature, heavy metal. These stresses seriously affect yield and quality of vegetable crops. During the recent decade, the studies on vegetables against abiotic stress have made some progress. Studies about drought stress focused on transcription factors such as DREB, WRKY, NAC, bHLH and bZIP in vegetables. These transcription factors were induced by drought stress and regulated the expressions of downstream genes to resist drought stress. Water transport genes (PIP, TIP), E3 ligase SIZ1 and DHN were also reported to be drought induced, and they rebalanced water potential, osmotic potential and reduced the ROS accumulation. The SOS pathway is critical in resisting salt stress. SlSOS2 upregulated the expressions of SlSOS1 and LeNHX2/4, which could maintain ion homeostasis and regulate the distribution of Na+ in plant organs under salt stress. To resist salt stress, NAC, ERF and MYB responded to salt stress and induced the expressions of tolerance-related genes. Furthermore, the synthesis of osmolyte is a common way to resist salt stress in vegetables. PvP5CS, tomPRO2 and BoiProDH improved the accumulation of proline, and SlBADH synthesized betaine under salt stress condition. As for extreme temperatures, extremes of cold and heat are threats to the plant growth. In response to high temperature stress, HSFs are the core of the regulatory network and can regulate series of anti-stress genes; including HSPs. SlHSFs formed a complex with each other to regulate the expressions of SlHSPs to resist heat stress in tomato. CBFs/EREBs were the core factors of cold stress and regulated by ICE1. LEA and HSPs prevented protein denaturation and maintained cell membrane fluidity at low temperature. To resist heavy metal stress, vegetables mainly depend on isolation in vivo and chelation mechanism in vivo and in vitro. In response to abiotic stresses in vegetables, ABA plays a crucial role as a signaling receptor. NAC, MYB, HSF and other transcription factors were induced by ABA signaling and responded to abiotic stress. These transcription factors enhanced the scavenging capacity of reactive oxygen species and synthesize more anti adversity substances in vegetables to resist multiple abiotic stresses.

Key words: vegetable, abiotic stress, stress responses, molecular biology

[1]    李辉尚, 孔繁涛, 沈辰, 马娟娟. “十三五时期我国蔬菜产业发展策略研究. 经济纵横, 2016 (11): 114-120.
LI H S, KONG F T, SHEN C, MA J J. The study on development strategy of China's vegetable industry in “13th Five-Year” period. Economic Review, 2016(11): 114-120. (in Chinese)
[2]    鲁松. 干旱胁迫对植物生长及其生理的影响. 江苏林业科技, 2012, 39(4): 51-54.
LU S. Effects of drought stress on plant growth and physiological traits. Journal of Jiangsu Forestry Science & Technology, 2012, 39(4): 51-54. (in Chinese)
[3]    王丽, 刘洋, 李德全. 植物干旱胁迫信号转导及其调控机制研究进展. 生物技术通报, 2012(10): 1-7.
WANG L, LIU Y, LI D Q. Drought stress signal transduction and regulation mechanism in plants. Biotechnology Bulletin, 2012(10): 1-7. (in Chinese)
[4]    田再民, 龚学臣, 抗艳红, 王璞, 丁倩, 翟崇娜, 王凯峰, 杨会彩. 植物对干旱胁迫生理反应的研究进展. 安徽农业科学, 2011, 39(26): 16475-16477.
TIAN Z M, GONG X C, KANG Y H, WANG P, DING Q, ZHAI C N, WANG K F, YANG H C. Research progress on the physiological response of plants to drought stress. Journal of Anhui Agricultural Science, 2011, 39(26): 16475-16477. (in Chinese)
[5]    SANCHEZ D H, PIECKENSTAIN F L, SZYMANSKI J, ERBAN A, BROMKE M, HANNAH M A, KRAEMER U, KOPKA J, UDVARDI M K. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE, 2011, 6: e170942).
[6]    NURUZZAMAN M, SHARONI A M, KIKUCHI S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 2013, 4: 248.
[7]    FRANCO-ZORRILLA J M, LOPEZ-VIDRIERO I, CARRASCO J L, GODOY M, VERA P, SOLANO R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2367-2372.
[8]    WANG H, WANG H, SHAO H, TANG X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 2016, 7: 67.
[9]    JOSHI R, WANI S H, SINGH B, BOHRA A, DAR Z A, LONE A, PAREEK A, SINGLA-PAREEK S L. Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science, 2016, 7: 1029.
[10]   孙琳琳, 辛士超, 强晓晶, 程宪国. 非生物胁迫下植物水通道蛋白的应答与调控. 植物营养与肥料学报, 2015, 21(4): 1040-1048.
SUN L L, XIN S C, QIANG X J, CHENG X G. Responsive regulation of aquaporins in the plants exposed to abiotic stresses. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 1040-1048. (in Chinese)
[11]   LI R, WANG J, LI S, ZHANG L, QI C, WEEDA S, ZHAO B, REN  S, GUO Y. plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato. Scientific Reports, 2016, 6: 31814.
[12]   YIN Y, WANG S, XIAO H, ZHANG H, ZHANG Z, JING H, ZHANG Y, CHEN R, GONG Z. Overexpression of the CaTIP1-1 pepper gene in tobacco enhances resistance to osmotic stresses. International Journal of Molecular Sciences, 2014, 15(11): 20101-20116.
[13]   QIAN Z, SONG J, CHAUMONT F, YE Q. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell and Environment, 2015, 38(3): 461-473.
[14]   ZHANG S, ZHUANG K, WANG S, LV J, MA N, MENG Q. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. Journal of Integrative Plant Biology, 2017, 59(2): 102-117.
[15]   LIU H, YU C, LI H, OUYANG B, WANG T, ZHANG J, WANG X, YE Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science, 2015, 231: 198-211.
[16]   JIANG L, WANG Y, ZHANG S, HE R, LI W, HAN J, CHENG X. Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Plant Growth Regulation, 2017, 81(1): 131-145.
[17]   LIU X, CHEN L, ZHANG J, LI J, GAO Y, WANG Z. Isolation and functional analysis of a new DREB transcription factor (BpDREB1) from Brassica pekinensis. Acta Agronomica Sinica, 2013, 39(2): 230-237.
[18] SUN X, GAO Y, LI H, YANG S, LIU Y. Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. Journal of Plant Biology, 2015, 58(1): 52-60.
[19]   ZHU M, CHEN G, ZHANG J, ZHANG Y, XIE Q, ZHAO Z, PAN Y, HU Z. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014, 33(11): 1851-1863.
[20]   WANG L, HU Z, ZHU M, ZHU Z, HU J, QANMBER G, CHEN G. The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue and Organ Culture, 2017, 129(1): 161-174.
[21]   FENG H, MA N, MENG X, ZHANG S, WANG J, CHAI S, MENG  Q. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiology and Biochemistry, 2013, 73: 309-320.
[22]   ORELLANA S, YANEZ M, ESPINOZA A, VERDUGO I, GONZALEZ E, RUIZ-LARA S, CASARETTO J A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell and Environment, 2010, 33(12): 2191-2208.
[23]   LI J, PU L, HAN M, ZHU M, ZHANG R, XIANG Y. Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 2014, 24(5): 943-960.
[24]   SHI H Z, QUINTERO F J, PARDO J M, ZHU J K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14(2): 465-477.
[25]   HRABAK E M, CHAN C, GRIBSKOV M, HARPER J F, CHOI J H, HALFORD N, KUDLA J, LUAN S, NIMMO H G, SUSSMAN M R, THOMAS M, WALKER-SIMMONS K, ZHU J K, HARMON A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 2003,132(2): 666-680.
[26]   LIU J P, ISHITANI M, HALFTER U, KIM C S, ZHU J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730-3734.
[27]   QUAN R, LIN H, MENDOZA I, ZHANG Y, CAO W, YANG Y, SHANG M, CHEN S, PARDO J M, GUO Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4): 1415-1431.
[28]   LIN H, YANG Y, QUAN R, MENDOZA I, WU Y, DU W, ZHAO S, SCHUMAKER K S, PARDO JM, GUO Y. Phosphorylation of SOS3-Like Calcium Binding Protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 2009, 21(5): 1607-1619.
[29]   QUINTERO F J, MARTINEZ-ATIENZA J, VILLALTA I, JIANG X, KIM W, ALI Z, FUJII H, MENDOZA I, YUN D, ZHU J, PARDO J M. Activation of the plasma membrane Na/H antiporter Salt-Overly- Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2611-2616.
[30]   KIM W, ALI Z, PARK H J, PARK S J, CHA J, PEREZ- HORMAECHE J, JAVIER QUINTERO F, SHIN G, KIM M R, QIANG Z, NING L, PARK H C, LEE S Y, BRESSAN R A, PARDO J M, BOHNERT H J, YUN D. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4: 1352.
[31]   YU L, NIE J, CAO C, JIN Y, YAN M, WANG F, LIU J, XIAO Y, LIANG Y, ZHANG W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist,2010, 188(3): 762-773.
[32]   OLIAS R, ELJAKAOUI Z, PARDO J M, BELVER A. The Na(+)/H(+) exchanger SOS1 controls extrusion and distribution of Na(+) in tomato plants under salinity conditions. Plant signaling & behavior, 2009, 4(10): 973-976.
[33]   BELVER A, OLIAS R, HUERTAS R, PILAR RODRIGUEZ- ROSALES M. Involvement of SlSOS2 in tomato salt tolerance.Bioengineered, 2012, 3(5): 298-302.
[34]   HUERTAS R, OLIAS R, ELJAKAOUI Z, JAVIER GALVEZ F, LI J, ALVAREZ DE MORALES P, BELVER A, PILAR RODRIGUEZ- ROSALES M. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell and Environment, 2012, 35(8): 1467-1482.
[35]   LI J, JIANG M, REN L, LIU Y, CHEN H. Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Molecular Genetics and Genomics, 2016, 291(4): 1769-1781.
[36]   WANG G, ZHANG S, MA X, WANG Y, KONG F, MENG Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016, 158(1): 45-64.
[37]   KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285(3): 245-260.
[38]   HAN Q, ZHANG J, LI H, LUO Z, ZIAF K, OUYANG B, WANG T, YE Z. Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Molecular Biology Reports, 2012, 39(2): 1713-1720.
[39]   YANG R, DENG C, BO O, YE Z. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports, 2011, 38(2): 857-863.
[40]   LU C W, SHAO Y, LI L, CHEN A J, XU WQ, WU K J, LUO Y B, ZHU B Z. Overexpression of SlERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance. Russian Journal of Plant Physiology, 2011, 58(1): 118-125.
[41]   ZHANG X M, YU H J, SUN C, DENG J, ZHANG X, LIU P, LI Y Y, LI Q, JIANG W J. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiology and Biochemistry, 2017, 113: 98-109.
[42]   LI Q, ZHANG C, LI J, WANG L, REN Z. Genome-Wide identification and characterization of R2R3MYB family in Cucumis sativus. PLoS ONE, 2012, 7: e4757610.
[43]   陈吉宝, 赵丽英, 景蕊莲, 王述民, 卢玉琼. 植物脯氨酸合成酶基因工程研究进展. 生物技术通报, 2010, (02): 8-10.
CHEN J B, ZHAO L Y, JING R L,WANG S M, LU Y Q. Advance in Genetic Engineering of Proline Synthetase in Plant. Biotechnology Bulletin, 2010, (02): 8-10. (in Chinese)
[44]   CHEN J, WANG S, JING R, MAO X. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. Journal of Plant Physiology, 2009,166(1): 12-19.
[45]   FUJITA T, MAGGIO A, GARCIA-RIOS M, BRESSAN R A, CSONKA L N. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta(1)- pyrroline-5-carboxylate synthetase from tomato. Plant Physiology, 1998, 118(2): 661-674.
[46]   AMINI F, EHSANPOUR A A. Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR. International Journal of Plant Production, 2009, 3(2): 69-76.
[47]   杨鹏, 刘莉莎, 温常龙, 赵立群, 赵冰, 郭仰东. 青花菜ProDH基因的克隆及功能鉴定. 基因组学与应用生物学, 2010, 29(2): 206-214.
YANG P, LIU L S, WEN C L, ZHAO L Q, ZHAO B, GUO Y D. cloning and functional identification of ProDH gene from Broccoli. Genomics and Applied Biology, 2010, 29(2): 206-214. (in Chinese)
[48]   LI S, ZHANG L, WANG Y, XU F, LIU M, LIN P, REN S, MA R, GUO Y. Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli. Scientific Reports, 2017, 7: 41397.
[49]   WANG J, LAI L, TONG S, LI Q. Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochemical and Biophysical Research Communications, 2013, 432(2): 262-267.
[50]   PIAO S, CIAIS P, HUANG Y, SHEN Z, PENG S, LI J, ZHOU L, LIU H, MA Y, DING Y, FRIEDLINGSTEIN P, LIU C, TAN K, YU Y, ZHANG T, FANG J. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467(7311): 43-51.
[51]   MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat? Trends in Biochemical Sciences,2012, 37(3): 118-125.
[52]   ALLAKHVERDIEV S I, KRESLAVSKI V D, KLIMOV V V, LOS D A, CARPENTIER R, MOHANTY P. Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 2008, 98(1/3): 541-550.
[53]   LAVANIA D, SIDDIQUI M H, AL-WHAIBI M H, SINGH A K, KUMAR R, GROVER A. Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 2015, 37: 17371.
[54]   毛胜利, 杜永臣, 王孝宣, 朱德蔚, 高建昌, 戴善书. 高温胁迫下番茄体内ABA水平的变化及其对花粉萌发的影响. 园艺学报, 2005, (02): 234-238.
MAO S L, DU Y C, WANG X X, ZHU D W, GAO J C, DAI S S. Changes of endogenous abscisic acid and the effent of exogenous aba on pollen germination under heat stress tomato. Acta Horticlturae Sinica, 2005, (02): 234-238. (in Chinese)
[55]   张玉华, 朱月林, 缪旻珉. 高温胁迫对黄瓜花药中Ca (2+)分布、ABA含量及蛋白质合成的影响. 园艺学报, 2005,(02): 314-317.
ZHANG Y H, ZHU Y L, MIAO M M. Effect of heat stress on calcium distribution, ABA contents and the synthesis of proteins in cucumber anthers. Acta Horticlturae Sinica, 2005, (02): 314-317. (in Chinese)
[56]   JACOB P, HIRT H, BENDAHMANE A. The heat-shock protein/ chaperone network and multiple stress resistance. Plant Biotechnology Journal, 2017, 15(4): 405-414.
[57]   GUO M, LIU J, MA X, LUO D, GONG Z, LU M. The plant heat stress transcription factors (hsfs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 2016, 7: 114.
[58]   AHSAN N, DONNART T, NOURI M, KOMATSU S. Tissue- Specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010, 9(8): 4189-4204.
[59]   BHARTI K, VON KOSKULL-DORING P, BHARTI S, KUMAR P, TINTSCHL-KORBITZER A, TREUTER E, NOVER L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004, 16(6): 1521-1535.
[60]   LI Z, ZHANG L, WANG A, XU X, LI J. Ectopic Overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE, 2013, 8: e548801.
[61]   FRAGKOSTEFANAKIS S, MESIHOVIC A, SIMM S, PAUPIERE M J, HU Y, PAUL P, MISHRA S K, TSCHIERSCH B, THERES K, BOVY A, SCHLEIFF E, SCHARF K. HsfA2 Controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiology,2016, 170(4): 2461-2477.
[62]   SHEN H, ZHONG X, ZHAO F, WANG Y, YAN B, LI Q, CHEN G, MAO B, WANG J, LI Y, XIAO G, HE Y, XIAO H, LI J, HE Z. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology, 2015, 33(9): 996-1006.
[63]   YANG X H, LIANG Z, LU C M. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 2005, 138(4): 2299-2309.
[64]   张扬. 番茄S-亚硝基谷胱甘肽还原酶基因(SlGSNOR)沉默对番茄高温抗性的影响[D]. 杭州: 浙江大学, 2013.
ZHANG Y. Effects of tomato S-nitrosoglutathione reductase gene (SlGSNOR) silencing on heat resistance in the leaves of tomato [D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[65]   WANG N, FANG W, HAN H, SUI N, LI B, MENG Q. Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiologia Plantarum, 2008,132(3): 384-396.
[66]   LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russian Journal of Plant Physiology, 2002, 49(6): 782-788.
[67]   THOMASHOW M F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiology, 2010, 154(2): 571-577.
[68]   JAGLO K R, KLEFF S, AMUNDSEN K L, ZHANG X, HAAKE V, ZHANG J Z, DEITS T, THOMASHOW M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127(3): 910-917.
[69]   YU X H, JUAN J X, GAO Z L, ZHANG Y, LI W Y, JIANG X M. Cloning and transformation of INDUCER of CBF EXPRESSION1 (ICE1) in tomato. Genetics and Molecular Research, 2015, 14(4): 13131-13143.
[70]   BEHNAM B, KIKUCHI A, CELEBI-TOPRAK F, KASUGA M, YAMAGUCHI-SHINOZAKI K, WATANABE K N. Arabidopsis rd29A :: DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Reports, 2007, 26(8): 1275-1282.
[71]   RENAUT J, HAUSMAN J F, WISNIEWSKI M E. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum, 2006, 126(1): 97-109.
[72]   LI Q B, HASKELL D W, GUY C L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Molecular Biology, 1999, 39(1): 21-34.
[73]   丁玉娟, 林昌虎, 何腾兵, 林绍霞, 张珍明. 蔬菜重金属污染现状及研究进展. 贵州科学, 2012, 30(5): 78-83.
DING Y J, LIN C H, HE T B, LIN S X, ZHANG Z M. Status and research progress of vegetables contaminated by heavy metals. Guizhou Science, 2012, 30(5): 78-83. (in Chinese)
[74]   MIYASAKA S C, BUTA J G, HOWELL R K, FOY C D. Mechanism of aluminum tolerance in snapbeans - root exudation of citric-acid. Plant Physiology, 1991, 96(3): 737-743.
[75]   KOCHIAN L V, PINEROS M A, HOEKENGA O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 2005: 175-195.
[76]   WU X, LI R, SHI J, WANG J, SUN Q, ZHANG H, XING Y, QI Y, ZHANG N, GUO Y. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55(8): 1426-1436..
[77]   LIGABA A, KATSUHARA M, RYAN P R, SHIBASAKA M, MATSUMOTO H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology, 2006, 142(3): 1294-1303.
[78]   HOEKENGA O A, MARON L G, PINEROS M A, CANCADO G, SHAFF J, KOBAYASHI Y, RYAN PR, DONG B, DELHAIZE E, SASAKI T, MATSUMOTO H, YAMAMOTO Y, KOYAMA H, KOCHIAN L V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9738-9743.
[79]   EIDE D, BRODERIUS M, FETT J, GUERINOT M L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5624-5628.
[80]   SHANMUGAM V, LO J, WU C, WANG S, LAI C, CONNOLLY E L, HUANG J, YEH K. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana - the role in zinc tolerance. New Phytologist, 2011, 190(1): 125-137.
[81]   CURIE C, ALONSO J M, LE JEAN M, ECKER J R, BRIAT J F. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 2000, 347(3): 749-755.
[82]   PAPOYAN A, KOCHIAN L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 2004, 136(3): 3814-3823.
[83]   GRILL E, LOFFLER S, WINNACKER E L, ZENK M H. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (Phytochelatin Synthase). Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 6838-6842.
[84]   STEFFENS J C, HUNT D F, WILLIAMS B G. Accumulation of nonprotein metal-binding polypeptides (gamma-glutamyl-cysteinyl) n-glycine in selected cadmium-resistant tomato cells. Journal of Biological Chemistry, 1986, 261(30): 13879-13882.
[85]   STROINSKI A, GIZEWSKA K, ZIELEZINSKA M. Abscisic acid is required in transduction of cadmium signal to potato roots. Biologia Plantarum, 2013, 57(1): 121-127.
[86]   WOJAS S, CLEMENS S, HENNIG J, SKODOWSKA A, KOPERA E, SCHAT H, BAL W, ANTOSIEWICZ D M. Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. Journal of Experimental Botany, 2008, 59(8): 2205-2219.
[87]   HE Z Y, LI J C, ZHANG H Y, MA M. Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science, 2005, 168(2): 309-318.
[88]   HEISS S, WACHTER A, BOGS J, COBBETT C, RAUSCH T. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany, 2003, 54(389): 1833-1839.
[89]   HASSINEN V H, TERVAHAUTA A I, SCHAT H, KARENLAMPI S O. Plant metallothioneins - metal chelators with ROS scavenging activity? Plant Biology, 2011, 13(2): 225-232.
[90]   KIM S H, LEE H S, SONG W Y, CHOI K S, HUR Y. Chloroplast-targeted BrMT1 (Brassica rapa type-1 Metallothionein) enhances resistance to cadmium and ROS in transgenic Arabidopsis plants. Journal of Plant Biology, 2007, 50(1): 1-7.
[91]   ZHANG H Y, XU W Z, DAI W T, HE Z Y, MA M. Functional characterization of cadmium-responsive garlic gene AsMT2b: A new member of metallothionein family. Chinese Science Bulletin, 2006, 51(4): 409-416.
[92]   LORETI E, VAN VEEN H, PERATA P. Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33: 64-71.
[93]   VOESENEK L A C J, SASIDHARAN R. Ethylene - and oxygen signalling - drive plant survival during flooding. Plant Biology, 2013, 15(3): 426-435.
[94]   VIDOZ M L, LORETI E, MENSUALI A, ALPI A, PERATA P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant Journal, 2010, 63(4): 551-562.
[95]   LICAUSI F, VAN DONGEN J T, GIUNTOLI B, NOVI G, SANTANIELLO A, GEIGENBERGER P, PERATA P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant Journal, 2010, 62(2): 302-315.
[96]   GIBBS D J, LEE S C, ISA N M, GRAMUGLIA S, FUKAO T, BASSEL G W, CORREIA C S, CORBINEAU F, THEODOULOU F L, BAILEY-SERRES J, HOLDSWORTH M J. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479(7373): 415.
[97]   LICAUSI F, KOSMACZ M, WEITS D A, GIUNTOLI B, GIORGI F M, VOESENEK L A C J, PERATA P, VAN DONGEN J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479(7373): 419.
[98]   CHIANG C, CHEN C, CHEN S, LIN K, CHEN L, SU Y, YEN H. Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis. Journal of Plant Research, 2017, 130(2): 373-386.
[99]   WANG H, SUI X, GUO J, WANG Z, CHENG J, MA S, LI X, ZHANG Z. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell and Environment, 2014, 37(3): 795-810.
[100] QI X, XU X, LIN X, ZHANG W, CHEN X. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics, 2012, 99(3): 160-168.
[101] DING X, JIANG Y, WANG H, JIN H, ZHANG H, CHEN C, YU J. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum, 2013, 35(5): 1427-1438.
[102] CUI L, ZOU Z, ZHANG J, ZHAO Y, YAN F. 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.). Functional & Integrative Genomics, 2016, 16(1): 29-35.
[103] HU L, LIAO W, DAWUDA M M, YU J, LV J. Appropriate NH4+: NO3- ratio improves low light tolerance of mini Chinese cabbage seedlings. Bmc Plant Biology, 2017, 17(1): 22.
[104] YU H, ZHAO W, WANG M, YANG X, JIANG W. The exogenous application of spermidine alleviates photosynthetic inhibition and membrane lipid peroxidation under low-light stress in tomato (Lycopersicon esculentum Mill.) seedlings. Plant Growth Regulation, 2016, 78(3): 413-420.
[105] ZHU J. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.

[106] JIN Q, XU Y, MATTSON N, LI X, WANG B, ZHANG X, JIANG H, LIU X, WANG Y, YAO D. identification of submergence-responsive micrornas and their targets reveals complex MiRNA-Mediated regulatory networks in lotus (Nelumb onucifera Gaertn). Frontiers in Plant Science, 2017, 8(6). Doi:10.3389/fpls.2017.00006.
[107]向娟, 林鹏, 李兴盛, 李双桃, 刘梦云, 张磊, 郭仰东. 过表达番茄Sly-miR397基因增强拟南芥的耐旱性. 中国农业大学学报, 2016, 21(10): 51-58.
XIANG J, LIN P, LI X S, LI S T, LIU M Y, ZHANG L, GUO Y D. Overexpression of tomato Sly-miR397 gene enhance drought tolerance in Arabidopsis thaliana. Journal of China Agricultural University, 2016, 21(10): 51-58. (in Chinese)
[108] HAYUT S F, BESSUDO C M, LEVY A A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications, 2017, 8(15605). Doi:10.1038/ncomms 15605.
[109] LI R, LI R, LI X, FU D, ZHU B, TIAN H, LUO Y, ZHU H. Multiplexed CRISPR/Cas9-mediated Metabolic Engineering of gamma-Aminobutyric Acid Levels in Solanum lycopersicum. Plant biotechnology Journal, 2017. doi:10.1111/pbi.12781.
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[3] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[4] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[5] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[6] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[7] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[8] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[9] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[10] ZHANG GuiFen,ZHANG YiBo,LIU WanXue,ZHANG Fan,XIAN XiaoQing,WAN FangHao,FENG XiaoDong,ZHAO JingNa,LIU Hui,LIU WanCai,ZHANG XiaoMing,LI QingHong,WANG ShuMing. Effect of Trap Color and Position on the Trapping Efficacy of Tuta absoluta [J]. Scientia Agricultura Sinica, 2021, 54(11): 2343-2354.
[11] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[12] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[13] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[14] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[15] WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang,HAO YuJin. Analysis of Apple Ethylene Response Factor MdERF72 to Abiotic Stresses [J]. Scientia Agricultura Sinica, 2019, 52(23): 4374-4385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!