Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2154-2166.doi: 10.3864/j.issn.0578-1752.2021.10.011

• HORTICULTURE • Previous Articles     Next Articles

Research Advances of Applying Virus-Induced Gene Silencing in Vegetables

LI Jie(),LUO JiangHong,YANG Ping()   

  1. College of Life Science and Technology, Honghe University, Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Mengzi 661100, Yunnan
  • Received:2020-07-31 Accepted:2020-12-08 Online:2021-05-16 Published:2021-05-24
  • Contact: Ping YANG E-mail:gsau23@126.com;gsau123@163.com

Abstract:

Recently, the virus-induced gene silencing (VIGS) as a reverse genetics tool is used for gene function analysis. Due to its advantages of simple construction, low cost and short cycle, VIGS technology has been extensively and deeply studied in the field of functional genomics. VIGS technology, as a fast, effective, high-throughout new technology, has played an important role in research of vegetable functional genes in plant development processes, disease resistance, stress resistance, biosynthesis and metabolic regulation. Herein, it is of great significance to excavate new genes and identify the function of disease resistance, stress resistance genes, crop improvement and molecular breeding by using VIGS technology. Many VIGS systems with virus as vector have been successfully established in vegetable crops, but they still have some shortcomings. With the in-depth exploration of the mechanism of VIGS and the continuous development of virus vectors, VIGS has been applied to a wider range of vegetable crops. This paper reviewed the current status and research progresses of gene function of eggplant, melons and leafy vegetables based on VIGS technology in recent years, and the mechanism of VIGS technology, the application of virus vector and the progress of VIGS technology was briefly analyzed. Meanwhile, the advantages and disadvantages of VIGS technology, RNA interference (RNAi) and current CRISP/CAS9 technology were compared and analyzed. It focused on the application of VIGS technology in vegetable fruit development and disease resistance, and the latest progresses of VIGS technology in vegetable crop metabolic regulation, hormone regulation, biotic and abiotic stress responses were summarized. The cases of studying target genes function and silencing phenotypes of solanaceous, melon, leafy and legume vegetables by VIGS were listed. Finally, the problems and deficiencies of VIGS technology in studying gene function of vegetable crops were summarized, such as lack of suitable VIGS vector, lack of effective virus vector infection method, difficulty in systematic silencing in some tissues, low silencing efficiency, inherent limitations of VIGS, etc. At the same time, the future research directions of VIGS technology in the development of virus vectors with higher specificity and stability, selection of efficient gene fragments, and establishment of virus vectors suitable for more host range were proposed. The application foreground of gene function analysis, improvement, molecular breeding of vegetable crops and production not carrying exogenous gene of vegetable varieties by VIGS technique was prospected. This review would provide a guidance and give ideas for future studies on the growth and development of vegetable crops, secondary metabolism and adversity stress related gene function research and breakthrough in the key factors restricting VIGS technique.

Key words: gene silencing, VIGS, vegetable, gene function

Table 1

List of genes silenced by VIGS and the phenotype observed in solanaceous vegetable"

物种
Species
靶基因
Target gene
载体
Vector
功能
Function
沉默表型
Silencing phenotype
参考文献
Reference
番茄
Tomato
KAS III, KAS IV/II-like TRV 酰基糖代谢
Acyl glucose metabolism
直链脂肪酸减少
Reduced straight-chain fatty acids
[36]
番茄
Tomato
SlSWEET1 TRV 糖的转运
Sugar transport
己糖含量降低
Decreased hexose
[37]
辣椒
Pepper
CaMYB108 TRV 辣椒素合成
Capsaicin synthesis
花粉延迟开裂
Delayed pollen cracking
[38]
辣椒
Pepper
pAMT ALSV 辣椒素合成
Capsaicin synthesis
辣椒素含量降低
Capsaicin content decreased
[39]
番茄
Tomato
SLAR TRV 类胡萝卜素合成
Carotenoids synthesis
类胡萝卜素含量降低
Carotenoids content decreased
[40]
茄子
Eggplant
PDS, CHLI, CHLH TRV 镁螯合酶
Magnesium chelatase
叶片发黄
Foliage yellowing
[41]
茄子
Eggplant
CHS TRV 类黄酮的合成
Flavonoids synthesis
果实颜色变浅,果实弯曲
Changed fruit color and fruit curved
[42]
番茄
Tomato
SlILL TRV 生长素合成
Auxin synthesis
加速离层
Accelerate the abscission layer
[43]
番茄
Tomato
LeCTR1 TRV 乙烯合成
Ethylene synthesis
叶片弯曲减轻
Reduced leaf curve
[44]
番茄
Tomato
DEK TRV 抗病性
Disease resistance
抗病性减弱
Attenuates disease resistance
[45]
茄子 SPDS TRV 抗枯萎病
Resistant to wilt
抗病性减弱
Attenuates disease resistance
[46]
辣椒
Pepper
CaPHL8 TRV 青枯病
Bacterial wilt
抗病性减弱
Attenuates disease resistance
[47]
番茄
Tomato
SAHH1, MS1, GAD2 TRV 青枯病
Bacterial wilt
抗病性减弱
Attenuates disease resistance
[48]
番茄
Tomato
ShORR-1 TRV 白粉病
Powdery mildew
叶片病斑增多
Leaf lesions increased
[49]
辣椒
Pepper
CaWRKY45, CaWRKY58 TRV 抗病和抗旱
Resistance to disease and drought
抗性减弱
Attenuates disease resistance
[50]
番茄
Tomato
ABC-C6, ABC-G33 TRV 根系分泌
The root secretion
根结线虫减少
Reduced nematodes
[51]
茄子
Eggplant
NBS-LRR TRV 根结线虫
Nematodes
抗病性减弱
Attenuates disease resistance
[52]
辣椒
Pepper
CaWRKY27 TRV 盐胁迫
Salt stress
抗性减弱
Attenuates resistance
[53]
番茄
Tomato
GSTU43 TRV 抗低温性
Chilling resistance
抗性减弱
Attenuates resistance
[54]
辣椒
Pepper
CaDIF1, CaDIS1 TRV 脱落酸和干旱胁迫
ABA and drought stress
气孔增大,蒸腾增加
Stomata and transpiration increases
[55]
番茄
Tomato
MYB80 TRV 抗低温
Chilling stress
抗低温减弱
Attenuates chilling resistance
[56]

Table 2

List of genes silenced by VIGS and the phenotype observed in melon, leaf and legume vegetable"

物种
Species
靶基因
Target gene
载体
Vector
功能
Function
沉默表型
Silencing phenotype
参考文献
Reference
黄瓜
Cucumber
GPAT6 TRV 不饱和脂肪酸的合成
Unsaturated fatty acids synthesis
抗性增强
Enhanced resistance
[62]
甜瓜
Muskmelon
LOX10 TRV 脂氧合酶合成
Lipoxygenase synthesis
细胞程序性死亡
Programmed cell death
[63]
菠菜
Spinach
GAL BCTV 调控开花
Regulation flowering
雌花结构改变
Changed female flower
[64]
叶用莴苣
Leaf lettuce
Hsp70 TRV 耐热性
Thermotolerance
茎伸长
Stem elongation
[65]
白菜
Chinese Cabbage
BrAN3, BrBRM TYMV 细胞伸长
Cell elongation
叶片卷曲,小叶增多
Leaf curled and increased
[66]
豌豆
Pea
CHLI PEBV 叶绿素的合成
Chlorophyll synthesis
叶片发黄
Leaf yellowing
[67]
豌豆
Pea
PsPIP2 PEBV 水通道蛋白合成
Aquaporin synthesis
叶片和根系衰退
Organ declines of leaf and root
[68]
[1] 方智远. 中国蔬菜育种科学技术的发展与展望. 农学学报, 2018,8(1):21-27.
FANG Z Y. Development progress and future perspectives of vegetable breeding sciences and technologies in China. Journal of Agriculture, 2018,8(1):21-27. (in Chinese)
[2] 黄季焜, 王济民, 解伟, 王晓兵, 侯玲玲, 周慧, 盛誉, 刘旭. 现代农业转型发展与食物安全供求趋势研究. 中国工程科学, 2019,21(5):1-9.
HUANG J K, WANG J M, XIE W, WANG X B, HOU L L, ZHOU H, SHENG Y, LIU X. Modern agricultural transformation and trend of food supply and demand in China. Engineering Science, 2019,21(5):1-9. (in Chinese)
[3] 倪晓鹏, 高志红. 园艺作物基因组测序研究进展. 江苏农业科学, 2016,44(2):9-13.
NI X P, GAO Z H. Research progress on genome sequencing of horticultural crops. Jiangsu Agricultural Science, 2016,44(2):9-13. (in Chinese)
[4] 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014,41(09):1885-1894.
SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing (VIGS). Acta Horticulturae Sinica, 2014,41(9):1885-1894. (in Chinese)
[5] BECKER A, LANGE M. VIGS-genomics goes functional. Trends in Plant Science, 2010,15(1):1-4.
doi: 10.1016/j.tplants.2009.09.002
[6] BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN- RASMUSSEN M, DUNOYER P, YAMAMOTO Y Y, SIEBURTH L, VOINNET O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320(5880):1185-1190.
doi: 10.1126/science.1159151
[7] LLAVE C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends in Plant Science, 2010,15(12):701-707.
doi: 10.1016/j.tplants.2010.09.001
[8] SENTHIL-KUMAR M, MYSORE K S. New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 2011,16(12):656-665.
doi: 10.1016/j.tplants.2011.08.006
[9] BURCH-SMITH T M, ANDERSON J C, MARTIN G B, DINESH-KUMAR S P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal, 2004,39(5):734-746.
doi: 10.1111/tpj.2004.39.issue-5
[10] MANNING K, TÖR M, POOLE M, HONG Y, THOMPSON A J, KING G J, GIOVANNONI J J, SEYMOUR G B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006,38(8):948-952.
doi: 10.1038/ng1841
[11] SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal, 2011,9(7):797-806.
doi: 10.1111/pbi.2011.9.issue-7
[12] IGARASHI A, YAMAGATA K, SUGAI T, TAKAHASHI Y, SUGAWARA E, TAMURA A, YAEGASHI H, YAMAGISHI N, TAKAHASHI T, ISOGAI M, TAKAHASHI H, YOSHIKAWA N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009,386(2):407-416.
doi: 10.1016/j.virol.2009.01.039
[13] GOLENBERG E M, SATHER D N, HANCOCK L C, BUCKLEY K J, VILLAFRANCO N M, BISARO D M. Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods , 2009,5:9.
doi: 10.1186/1746-4811-5-9
[14] PANDEY P, CHOUDHURY N R, MUKHERJEE S K. A geminiviral amplicon VA derived from tomato leaf curl virus ToLCV can replicate in a wide variety of plant species and also acts as a VIGS vector. Virology Journal, 2009,6:152.
doi: 10.1186/1743-422X-6-152
[15] CAI X Z, WANG C C, XU Y P, XU Q F, ZHENG Z, ZHOU X P. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research, 2007,125(2):169-175.
doi: 10.1016/j.virusres.2006.12.016
[16] HUANG C J, XIE Y, ZHOU X P. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnology Journal, 2009,7(3):254-265.
doi: 10.1111/pbi.2009.7.issue-3
[17] 李国龙, 吴海霞, 孙亚卿. 甜菜BvWRKY23基因的RNAi载体构建. 作物杂志, 2020(5):41-47.
LI G L, WU H X, SUN Y Q. Construction of RNAi expression vector of BvWRKY23 gene in sugar beet. Crops, 2020(5):41-47. (in Chinese)
[18] KUMAGAI M, DONSON J, DELLA-CIOPPA G, HARVEY D, HANLEY K, GRILL L K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences, 1995,92(5):1679-1683.
[19] RUIZ M T, VOINNET O, BAULCOMBE D C. Initiation and maintenance of virus-induced gene silencing. The Plant Cell Online, 1998,10(6):937-946.
doi: 10.1105/tpc.10.6.937
[20] VALENTINE T, SHAW J, BLOK V C, PHILLIPS M S, OPARKA K J, LACOMME C. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology, 2004,136(4):3999-4009.
doi: 10.1104/pp.104.051466
[21] WANG X Y, CAO A Z, YU C M, WANG D W, WANG X E, CHEN P D. Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa. Molecular Biology Reports, 2010,37(2):967-972.
doi: 10.1007/s11033-009-9766-1
[22] 张怡, 阮九霄, 马晓萌, 傅露露, 乔月娥, 段素娟, 孟娉, 李成伟. 大豆胞囊线虫VIGS载体的构建与鉴定. 华北农学报, 2012,27(3):223-226.
ZHANG Y, RUAN J X, MA X M, FU L L, QIAO Y E, DUAN S J, MENG P, LI C W. Identification and construction of the recombinant vector of virus induced gene silencing of soybean heterodera glycines ichinohe. Acta Agricultural Boreali-Sinica, 2012,27(3):223-226. (in Chinese)
[23] PANDEY P, SENTHIL-KUMAR M, MYSORE K S. Advances in plant gene silencing methods. Methods in Molecular Biology, 2015,1287(3):3-23.
[24] 赵祯, 刘富中, 张映, 齐东霞, 陈钰辉, 连勇. 茄子SmMsrA基因VIGS表达载体的构建及表达分析. 园艺学报, 2015,42(8):1495-1504.
ZHAO Z, LIU F Z, ZHANG Y, QI D X, CHEN Y H, LIAN Y. VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant. Acta Horticulturae Sinica, 2015,42(8):1495-1504. (in Chinese)
[25] 宋恬, 田嘉, 李鹏, 刘梦婕, 张琦, 郭长奎, 李疆. 扁桃AcCBF1基因VIGS载体构建与功能分析. 果树学报, 2019,36(4):421-429.
SONG T, TIAN J, LI P, LIU M J, ZHANG Q, GUO C K, LI J. Vector construction and functional analysis of AcCBF1 using VIGS method in almond flower organs. Journal of Fruit Science, 2019,36(4):421-429. (in Chinese)
[26] 邱润霜, 赵立华, 张晓明, 崔玥, 张洁, 郑雪, 李靖, 张仲凯. 番茄斑萎病毒N基因的VIGS载体构建. 植物病理学报, 2020,50(6):1-12.
QIU R S, ZHAO L H, ZHANG X M, CUI Y, ZHANG J, ZHENG X, LI J, ZHANG Z K. Construction of a VIGS vector containing N gene derived from tomato spotted wilt orthotospovirus. Acta Phytopathologica Sinica, 2020,50(6):1-12. (in Chinese)
[27] 杨同文, 武安泉, 盛东峰, 李成伟. 病毒诱导的基因沉默在番茄功能基因组学研究中的应用进展. 园艺学报, 2014,41(3):564-576.
YANG T W, WU A Q, SHENG D F, LI C W. Applications of virus-induced gene silencing in studies on tomato functional genomics. Acta Horticulturae Sinica, 2014,41(3):564-576. (in Chinese)
[28] 刘美, 刘莉铭, 吴会杰, 古勤生. VIGS技术的研究进展及其在葫芦科作物中的应用. 果树学报, 2018,35(11):1422-1429.
LIU M, LI L M, WU H J, GU Q S. Research progress in VIGS technology and its application in Cucurbitaceae crops. Journal of Fruit Science, 2018,35(11):1422-1429. (in Chinese)
[29] 郑璐平, 谢荔岩, 林奇英, 谢联辉. 病毒诱导基因沉默的研究进展. 福建农林大学学报(自然科学版), 2008,37(6):636-640.
ZHENG L P, XIE L Y, LIN Q Y, XIE L H. Advance in virus-induced gene silencing. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008,37(6):636-640. (in Chinese)
[30] TUTTLE J R, HAIGLER C H, ROBERTSON D. Method: Low-cost delivery of the cotton leaf crumple virus-induced gene silencing system. Plant Methods, 2012,8(1):27.
doi: 10.1186/1746-4811-8-27
[31] 王晓迪, 冀顺霞, 申晓娜, 刘万学, 万方浩, 张桂芬, 吕志创. 纳米载导RNAi技术在害虫防治中的研究和应用. 中国生物防治学报, 2020: 1-20.
WANG X D, JI S X, SHEN X N, LIU W X, WAN F H, ZHANG G F, LÜ Z C. Research and application of nanoparticle-mediated RNAi technology in pest control. Chinese Journal of Biological Control, 2020, 1-20. (in Chinese)
[32] 武林琳, 竹梦婕, 王咪, 李晓萍, 刘跃鹏, 裴蕾, 杨淑巧, 许琦, 王华, 郭文治. CRISPR/Cas9技术在农作物中应用的局限及改进. 现代农业科技, 2020(22):26-29.
WU L L, ZHU M J, WANG M, LI X P, LIU Y P, PEI L, YANG S Q, XU Q, WANG H, GUO W Z. The limitation and improvement of CRISPR/Cas9 technology in crops application. Modern Agricultural Science and Technology, 2020(22):26-29. (in Chinese)
[33] RAMEGOWDA V, SENTHIL-KUMAR M, UDAYAKUMAR M, MYSORE K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 2013,13(1):193-210.
doi: 10.1186/1471-2229-13-193
[34] ZHAO J P, WANG G Y, JIANG H L, LIU T L, DONG J G, WANG Z H, ZHANG B L, SONG J Q. Virus-based microRNA silencing in plants. Methods in Molecular Biology, 2020,2172:243-257.
[35] CONG L, RAN F A, COX D, LIN S L, BARRETTO R, HABIB N, HSU P D, WU X B, JIANG W Y, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143
[36] MANDAL S, JI W M, MCKNIGHT T D. Candidate gene networks for acylsugar metabolism and plant defense in wild tomato Solanum pennellii. The Plant Cell, 2020,32(1):81-99.
doi: 10.1105/tpc.19.00552
[37] HO L H, KLEMENS PATRICK A W, NEUHAUS H E, KO H Y, HSIEH S Y, GUO W J. SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany, 2019,70(12):3241-3254.
doi: 10.1093/jxb/erz154
[38] SUN B M, ZHU Z S, CHEN CH J, CHEN G J, CAO B H, CHEN C M, LEI J J. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum. Journal of Agricultural and Food Chemistry, 2019,67(39):10891-10903.
doi: 10.1021/acs.jafc.9b04978
[39] LI C J, HIRANO H, KASAJIMA I, YAMAGISHI N, YOSHIKAWA N. Virus-induced gene silencing in chili pepper by apple latent spherical virus vector. Journal of Virological Methods, 2019,273:113711.
doi: 10.1016/j.jviromet.2019.113711
[40] D'AMELIA V, RAIOLA A, CARPUTO D, FILIPPONE E, BARONE A, RIGANO M M. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Scientific Reports, 2019,9(1):3699.
doi: 10.1038/s41598-019-40142-3
[41] WANG C C, SULLI M, FU D Q. The role of phytochromes in regulating biosynthesis of sterol glycoalkaloid in eggplant leaves. PLoS ONE, 2017,12(12):e0189481.
doi: 10.1371/journal.pone.0189481
[42] WANG C C, FU D Q. Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism. Journal of Agricultural and Food Chemistry, 2018,66(11):2623-2629.
doi: 10.1021/acs.jafc.7b05617
[43] FU X, SHI Z H, JIANG Y, JIANG L L, QI M F, XU T, LI T L. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biology, 2019,19(1):233.
doi: 10.1186/s12870-019-1840-9
[44] CHANDAN R K, SINGH A K, PATEL S, SWAIN D M, TUUEJA N, JHA G. Silencing of tomato CTR1 provides enhanced tolerance against tomato leaf curl virus infection. Plant Signaling & Behavior, 2019,14(3):e1565595.
[45] ZHANG H J, YAN M J, DENG R, SONG F M, JIANG M. The Silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus- induced gene silencing analysis in tomato. Gene, 2020,727:144245.
doi: 10.1016/j.gene.2019.144245
[46] QIU Z K, YAN S H, XIA B, JIANG J, YU B W, LEI J J, CHEN C M, CHEN L, YANG Y, WANG YQ, TIAN S B, CAO B H. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. Journal of Experimental Botany, 2019,70(19):5343-5354.
doi: 10.1093/jxb/erz259
[47] ALI N, ANSAR H, MUHAMMAD A, MUHAMMAD I K, MUHAMMAD F A, MADIHA Z, KHALID A K, HAMED A G, HE S L. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen. Microbial Pathogenesis, 2019,137(12):103758.
doi: 10.1016/j.micpath.2019.103758
[48] WANG G P, KONG J, CUI D D, ZHAO H B, NIU Y, XU M Y, JIANG G F, ZHAO Y H, WANG W Y. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. The Plant Journal, 2019,97(6):1032-1047.
doi: 10.1111/tpj.2019.97.issue-6
[49] ZHANG Y, XU K D, PEI D L, YU D S, ZHANG J, LI X L, CHEN G, YANG H, ZHOU W J, LI C W. ShORR-1, a novel tomato gene, confers enhanced host resistance to Oidium neolycopersici. Frontiers in Plant Science, 2019,10(7):1400.
doi: 10.3389/fpls.2019.01400
[50] CHENG Y, AHAMMED G J, YAO Z P, YE Q J, RUAN M Y, WANG R Q, LI Z M, ZHOU G Z, WAN H J. Comparative genomic analysis reveals extensive genetic variations of WRKYs in solanaceae and functional variations of CaWRKYs in pepper. Frontiers in Genetics, 2019,10:492.
doi: 10.3389/fgene.2019.00492
[51] COX D E, DYER S, WEIR R, CHESETO X, STURROCK M, COYNE D, TORTO B, MAULE A G, DALZELL J J. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere. Scientific Reports, 2019,9(1):19899.
doi: 10.1038/s41598-019-56493-w
[52] ZHOU X H, LIU J, BAO S Y, YANG Y, ZHUANG Y. Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to meloidogyne incognita. International Journal of Molecular Sciences, 2018,19(2):583.
doi: 10.3390/ijms19020583
[53] LIN J H, DANG F F, CHEN Y P, GUAN D Y, HE S L. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. Plant Physiology and Biochemistry, 2019,145(12):43-51.
doi: 10.1016/j.plaphy.2019.08.013
[54] LIU T, DU Q J, LI S Z, YANG J Y, LI X J, XU J J, CHEN P X, LI J M, HU X H. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC Plant Biology, 2019,19(1):323.
doi: 10.1186/s12870-019-1929-1
[55] LIM J S, LIM C W, LEE S C. Functional analysis of pepper F-box protein CaDIF1 and its interacting partner CaDIS1: Modulation of ABA signaling and drought stress response. Frontiers in Plant Science, 2019,10:1365.
doi: 10.3389/fpls.2019.01365
[56] CHEN X H, DUAN X F, WANG S, WU W Y, ZHANG X C. Virus-induced gene silencing (VIGS) for functional analysis of MYB80 gene involved in Solanum lycopersicum cold tolerance. Protoplasma, 2019,256(2):409-418.
doi: 10.1007/s00709-018-1302-5
[57] 朱梦卓, 赵俊杰. 基于SCIE收录论文的中日基因编辑技术领域国际合作比较. 中华医学图书情报杂志, 2019,28(3):32-41.
ZHU M Z, ZHAO J J. Comparison of SCIE-covered international cooperation papers on gene editing technology between people's republic of China and Japan. Chinese Journal of Medical Library and Information Science, 2019,28(3):32-41. (in Chinese)
[58] WANG H Y, YANG H, SHIVALILA C S, DAWLATY M M, CHENG A W, ZHANG F, JAENISCH R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013,153(4):910-918.
doi: 10.1016/j.cell.2013.04.025
[59] 黄少勇, 王娟, 王柏柯, 李宁, 唐亚萍, 杨生保, 杨涛, 张国儒, 帕提古丽·艾斯木托拉, 高杰, 余庆辉. CRISPR/Cas9技术在园艺作物中的研究进展. 新疆农业科学, 2020,57(07):1223-1232.
HUANG S Y, WANG J, WANG B K, LI N, TANG Y P, YANG S B, YANG T, ZHANG G R, PATIGULI A, GAO J, YU Q H. Application progress of CRISPR/Cas9 technology in horticultural crops. Xinjiang Agricultural Sciences, 2020,57(7):1223-1232. (in Chinese)
[60] 许志茹, 刘通, 崔国新, 李春雷, 马静, 李玉花. 芜菁二氢黄酮醇4-还原酶基因的克隆与功能鉴定. 园艺学报, 2014,41(4):687-700.
XU Z R, LIU T, CUI G X, LI C L, MA J, LI Y H. Cloning and function identification of dihydroflavonol 4-reductase genes in turnip. Acta Horticulturae Sinica, 2014,41(4):687-700. (in Chinese)
[61] YIN Y L, QIN K Z, SONG X W, ZHANG Q H, ZHOU Y H, XIA X J, YU J Q. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinases-mediated reactive oxygen species signaling in tomato. Plant Cell Physiology, 2018,59(11):2239-2254.
[62] BU R F, WANG R H, WEI Q C, HU H Y, SUN H L, SONG P W, YU Y G, LIU Q L, ZHENG Z C, LI T, LI D X, WANG L, CHEN S J, WU L L, WU J Y, LI C W. Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA). Plant and Soil, 2019,438:329-346.
doi: 10.1007/s11104-019-03996-0
[63] LIAO J J, WANG C H, XING Q J, LI Y P, LIU X F, QI H Y. Overexpression and vigs system for functional gene validation in oriental melon (Cucumis melo var. makuwa makino). Plant Cell, Tissue and Organ Culture, 2019,137:275-284.
doi: 10.1007/s11240-019-01568-9
[64] WEST N W, GOLENBERG E M. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. The New phytologist, 2018,217(3):1322-1334.
doi: 10.1111/nph.14919
[65] 李雅博, 李婷, 韩莹琰, 范双喜. 叶用莴苣热激蛋白基因LsHsp70-2711的克隆及高温胁迫下的功能分析. 中国农业科学, 2017,50(8):1486-1494.
LI Y B, LI P, HAN Y Y, FAN S X. Cloning and function analysis of heat-shock-protein LsHsp70-2711 gene under high temperature stress in leaf lettuce (Lactuca sativa L.). Scientia Agricultura Sinica, 2017,50(8):1486-1494. (in Chinese)
[66] YU J, GAO L W, LIU W S, SONG L X, XIAO D, LIU T K, HOU XILIN, ZHANG C W. Transcription coactivator ANGUSTIFOLIA3 (AN3) regulates leafy head formation in Chinese cabbage. Frontiers in Plant Science, 2019,10:520.
doi: 10.3389/fpls.2019.00520
[67] LUO S, LUO T, PENG P, LI Y P, LI X G. Disturbance of chlorophyll biosynthesis at Mg branch affects the chloroplast ROS homeostasis and Ca2+ signaling in Pisum sativum. Plant Cell, Tissue and Organ Culture, 2016,127(3):729-737.
doi: 10.1007/s11240-016-1008-3
[68] SONG J J, YE G L, QIAN Z, YE Q. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum. Botanical Studies, 2016,57(1):15.
doi: 10.1186/s40529-016-0135-9
[69] AKI I, KOUSUKE Y, TOMOKAZU S, YUKARI T, EMIKO S, AKIHIRO T, HAJIME Y, NORIKO Y, TSUBASA T, MASAMICHI I, HIDEKI T, NOBUYUKI Y. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits and legumes. Virology, 2009,386(2):407-416.
[70] MA C F, LIU M C, LI Q F, SI J, REN X S, SONG H Y. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Horticultural Plant Journal, 2019,5(4):164-169.
doi: 10.1016/j.hpj.2019.04.001
[71] CONSTANTIN G D, KRATH B N, MACFARLANE S A, NICOLAISEN M, JOHANSEN I E, LUND O S. Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 2004,40(4):622-631.
doi: 10.1111/tpj.2004.40.issue-4
[72] ZHANG C Q, BRADSHAW J D, WHITHAM S A, HILL J H. The Development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiology, 2010,153(1):52-65.
doi: 10.1104/pp.109.151639
[73] 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020,26(5):82-89.
LIU T B, CAI H L, TENG K, ZENG W A, MAO H, WEI R J, ZHOU Z C, ZHOU X P, DAI L Y, TANG Q J. Control of tobacco potato virus Y by virus-induced gene silencing. Acta Tabacaria Sinica, 2020,26(5):82-89. (in Chinese)
[74] 李姣, 于宗霞, 冯宝民. 植物中病毒诱导基因沉默技术的研究与应用进展. 分子植物育种, 2019,17(5):1537-1542.
LI J, YU Z X, FENG B M. Advances in research and application of virus induced gene silencing in plants. Molecular Plant Breeding, 2019,17(5):1537-1542. (in Chinese)
[75] NEENA M, ELIZABETH A W, KARL E R, PENG L, RITESH G J, CHRISTELLE T A, STEPHEN J F, BERNARD J C, LU G Q, XU Z P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017,3(2):16207.
doi: 10.1038/nplants.2016.207
[76] JAMES A B, THIERRY B, WILLIAM C, GREGORY R H, PASCALE F, OLIVER, SCOTT J, GEERT P, TICHAFA M, MICHAEL P, TY V, JAMES R. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007,25(11):1322-1326.
doi: 10.1038/nbt1359
[77] 王栋, 陈源泉, 李道亮, 朱万斌, 谭伟明, 杜太生, 田见晖, 康绍忠. 农业领域若干颠覆性技术初探. 中国工程科学, 2018,20(6):57-63.
WANG D, CHEN Y Q, LI D L, ZHU W B, TAN W M, DU T S, TIAN J H, KANG S Z. Foresight of disruptive technologies in agricultural engineering. Engineering Science, 2018,20(6):57-63. (in Chinese)
[78] ZHU K Y, PALLI S R. Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 2020,65(1):293-311.
doi: 10.1146/annurev-ento-011019-025224
[79] 张守路, 饶力群, 汪启明. 基于RNAi的转基因作物研发进展. 现代农业科技, 2018(21):3-4, 6.
ZHANG S L, RAO L Q, WANG Q M. Advances in research and development of genetically modified crops based on RNAi. XianDai NongYe KeJi, 2018(21):3-4, 6. (in Chinese)
[80] DONOHOUE P D, BARRANGOU R, MAY A P. Advances in industrial biotechnology using CRISPR-Cas systems. Trends in Biotechnology, 2018,36(2):134-146.
doi: 10.1016/j.tibtech.2017.07.007
[81] SENTHIL-KUMAR M, MYSORE K S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols, 2014,9(7):1549-1562.
doi: 10.1038/nprot.2014.092
[82] 周洋丽, 侯朔, 郑正权, 高燕会, 童再康. 基于VIGS基因沉默体系的换锦花LsMYBs基因功能研究. 农业生物技术学报, 2020,28(6):974-983.
ZHOU Y L, HOU S, ZHENG Z Q, GAO Y H, TONG Z K. Study on LsMYBs gene function in Lycoris sprengeri based on VIGS gene silencing system. Journal of Agricultural Biotechnology, 2020,28(6):974-983. (in Chinese)
[83] CAI Q, QIAO L L, WANG M, HE B Y, LIN F M, PALMQUIST J, HUANG H D, JIN H L. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 2018,360(6393):1126-1129.
doi: 10.1126/science.aar4142
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[3] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[4] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[5] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[6] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[7] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[8] QU XiaoLing,JIAO YuBing,LUO JianDa,SONG LiYun,LI Ying,SHEN LilLi,YANG JinGuang,WANG FengLong. Cloning of Nicotiana benthamiana NAC062 and Its Inhibitory Effect on Potato Virus Y Infection [J]. Scientia Agricultura Sinica, 2021, 54(19): 4110-4120.
[9] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[10] ZHANG GuiFen,ZHANG YiBo,LIU WanXue,ZHANG Fan,XIAN XiaoQing,WAN FangHao,FENG XiaoDong,ZHAO JingNa,LIU Hui,LIU WanCai,ZHANG XiaoMing,LI QingHong,WANG ShuMing. Effect of Trap Color and Position on the Trapping Efficacy of Tuta absoluta [J]. Scientia Agricultura Sinica, 2021, 54(11): 2343-2354.
[11] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[12] MingYue GONG,XiaoTian DUAN,TingTing YU,Jie WANG,LiLi SHEN,Ying LI,MingHong LIU,YongLiang LI,HongKun LÜ,SongBai ZHANG,JinGuang YANG. Cloning of Hsc70-2 and Its Promoting Effect on Potato virus Y Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2020, 53(4): 771-781.
[13] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[14] LIU Yong,LI Fan,LI YueYue,ZHANG SongBai,GAO XiWu,XIE Yan,YAN Fei,ZHANG AnSheng,DAI LiangYing,CHENG ZhaoBang,DING Ming,NIU YanBing,WANG ShengJi,CHE HaiYan,JIANG Tong,SHI XiaoBin,HE ZiFu,WU YunFeng,ZHANG DeYong,QING Ling,YAN WanRong,YANG XueHui,TANG YaFei,ZHENG HongYing,TANG QianJun,ZHANG SongBai,ZHANG DongFang,CAI Li,TAO XiaoRong. Identification, Distribution and Occurrence of Viruses in the Main Vegetables of China [J]. Scientia Agricultura Sinica, 2019, 52(2): 239-261.
[15] LIU YanJun,LIU Zhe,MENG XiangHong,LU BaiYi. Evaluation of the Vegetables Nutritive Values Based on ‘Three Degree’ Method [J]. Scientia Agricultura Sinica, 2019, 52(18): 3177-3191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!