Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3650-3664.doi: 10.3864/j.issn.0578-1752.2020.18.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa

CUI MiaoMiao(),MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin()   

  1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2019-10-30 Accepted:2020-03-13 Online:2020-09-16 Published:2020-09-25
  • Contact: XueMin WANG E-mail:994914959@qq.com;wangxuemin@caas.cn

Abstract:

【Objective】 Cloning the Brassinolide (BRS) synthetase gene MsDWF4 of alfalfa (Medicago sativa L.), analyzing the gene characteristics and gene expression pattern, performed the salt-tolerance analysis, therefore to clarify the function of MsDWF4 in abiotic stress resistance and provide a reference for revealing the molecular mechanism of MsDWF4 in regulating abiotic stress resistance in alfalfa. 【Method】 The homologous gene of DWF4 in M. sativa was cloned by using homology-based cloning according to the known DWF4 gene sequence of Arabidopsis. Sequence characteristics were analyzed by bioinformatics tools. Quantitative Real-time PCR (qRT-PCR) was applied for detecting the gene expression in different alfalfa tissues and the expression patterns under multiple abiotic stress (high temperature, cold damage, drought and high salt) and hormones treatment (auxin, brassinolide, abscisic acid and jasmonate). The MsDWF4 overexpression vector was constructed and transformed into alfalfa by Agrobacterium mediated transformation, and MsDWF4 overexpression transgenic alfalfa plants were obtained. The transgenic alfalfa lines were treated with high salt (200 mmol·L -1 NaCl) and the activities of antioxidant enzymes were analyzed to study whether MsDWF4 could improve the salt tolerance of alfalfa. 【Result】 The length of MsDWF4 CDS was 1 470 bp, which encoded a protein of 489 amino acids, belonging to the single oxygenases of cytochrome P450 family. The MsDWF4 had 67 kinase phosphorylation sites. Sequence and phylogenetic tree analysis show that MsDWF4 protein was most closely related to DWF4 protein of legume plant M. truncatula and had the farthest relationship with Gramineaeis. Tissue-specific expression analysis illustrated that MsDWF4 had the highest expression in the root tip, followed by flowers and leaves. High temperature, cold, PEG, NaCl, ABA and IAA all positively induced the expression of MsDWF4 gene in the alfalfa. After BR treatment, the expression of MsDWF4 was down regulated in shoot and root. The expression of MsDWF4 was inhibited by JA treatment. A 35S∷MsDWF4 overexpression vector was constructed and transformed into alfalfa by Agrobacterium mediated method. PCR identification showed that MsDWF4 gene has been transferred into alfalfa and 6 positive transgenic lines were obtained. Under salt stress, the expression of MsDWF4 gene and the activity of antioxidant enzymes of alfalfa overexpression MsDWF4 gene are higher than that of the control plants. 【Conclusion】 The cDNA sequence of alfalfa brassinolide synthetase gene MsDWF4 was obtained. It was found that the gene expressed the highest in root tip and its expression is responded to a variety of abiotic stress and exogenous hormone treatment. MsDWF4 gene enhanced the resistance to salt stress in transgenic alfalfa. The results showed that MsDWF4 may participate in many kinds of stress response processes and positively regulate the salt tolerance of alfalfa.

Key words: Medicago sativa, brassinosteroids, MsDWF4, abiotic stress, salt resistance

Fig. 1

A simplified brassinosteroid biosynthetic pathway [10]"

Table 1

Bioinformatics tools which were used in this research"

生物信息学工具
Bioinformatics tools
网址
Website
用途
Purpose
DNAMAN https://www.lynnon.com/qa.html 多序列比对Multiple sequence alignment
MEGAX https://www.megasoftware.net/ 系统发育进化树的建Establishment of phylogenetic tree
Evolview https://www.evolgenius.info/evolview 系统发育进化树的美Beautification of phylogenetic tree
ExPASy https://web.expasy.org/protparam/ 蛋白质一级结构分析Protein primary structure analysis
TMHMM2.0Server http://www.cbs.dtu.dk/services/TMHMM 蛋白跨膜结构域分析Analysis of protein transmembrane domain
ExPASy-Protscale https://web.expasy.org/protscale/ 蛋白亲疏水性分析Protein hydrophobicity analysis
ExPASy-Swiss-model https://swissmodel.expasy.org/interactive 蛋白三级结构预测Protein tertiary structure prediction
CDD https://www.ncbi.nlm.nih.gov/Structure/cdd 蛋白保守结构域预测Protein conserved domain prediction
NetPhos3.1Server http://www.cbs.dtu.dk/services/NetPhos/ 蛋白激酶磷酸化修饰位点预测
Prediction of protein kinase phosphorylation modification sites

Table 2

Primers used in this research"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
ORF-F CACCCTATTGGCTTCACA
ORF-R GAAAGTGGTCCTATTGACA
qDF AACAAAACATGCCAAACCCAA
qDR CCATTTCCCAAGTATTCCACCA
Msactin-F CAAAAGATGGCAGATGCTGAGGAT
Msactin-R CATGACACCAGTATGACGAGGTCG
pMsDWF4-F ACGGGGGACGAGCTCGGTACCATGTCTGACTCAGATGTAACTT
pMsDWF4-R CTTGCTCACCATGTCGACTCTAGATATTATAGAGTGGGCTTGGACTCTAATTTGTAGG
MDF CCACTGACGTAAGGGATGACG
MDR TGTCGAAACCGATGATACGAACGAA

Fig. 2

Amplification results of MsDWF4 Marker:Trans2K?DNA marker"

Fig. 3

Amino acid sequence alignment results of DWF4 from different species"

Fig. 4

Phylogenetic tree analysis of DWF4 in different species GsDWF4:野大豆Glycine soja,KHN36124.1;GmDWF4:大豆Glycine max,XP_003538851.1;CcDWF4:木豆Cajanus cajan,XP_020218337.1;VuDWF4:豇豆Vigna unguiculate,XP_027906963.1;VrDWF:绿豆Vigna radiate var. radiate,XP_014521401.1;AiDWF4:花生Arachis ipaensis,XP_016201854.1;AhDWF4:落花生Arachis hypogaea,XP_025698850.1;AdDWF4:蔓花生Arachis duranensis,XP_015964027.1;MpDWF4:刺毛黎豆Mucuna pruriens,RDX99099.1;MtDWF4:蒺藜苜蓿Medicago truncatula,XP_003611982.2;QlDWF4:大叶栎Quercus lobate,XP_030975180.1;QsDWF4:欧洲栓皮栎Quercus suber,XP_023894277.1;RaDWF4:玫瑰木Rhodamnia argentea,XP_030523810.1;SoDWF4:Syzygium oleosum,XP_030468974.1;CsDWF4:大麻Cannabis sativa,XP_030498974.1;MnDWF4:川桑Morus notabilis,XP_010091301.2;CeDWF4:香樱咖啡Coffea eugenioides,XP_027179795.1;CaDWF4:小果咖啡Coffea Arabica,XP_027074813.1;NaDWF4:野生烟草Nicotiana attenuate,OIT06386.1;SpDWF4:潘那利番茄Solanum pennelli,XP_015064267.1;StDWF4:马铃薯Solanum tuberosum,QAB35648.1;CrDWF4:白菜Capsella rubella,XP_006290928.1;AlDWF4:玉山筷子芥Arabidopsis lyrata subsp. Lyrata,EFH54017.1;ZmDWF4:玉米Zea mays,APQ46083.1;BdDWF4:二穗短柄草Brachypodium distachyon,XP_003558427.1;TaDWF4:普通小麦Triticum aestivum,AAR11387.1;TuDWF4:乌拉尔图小麦Triticum urartu,EMS59113.1。蓝色:豆科;黄色:壳斗科;红色:桃金娘科;绿色:桑科;橘红色:茜草科;粉色:茄科;黑色:十字花科;紫色:禾本科;红色圆圈:MsDWF4 Blue: Leguminosae; Yellow: Fagaceae; Red: Myrtle; Green: Moraceae; Orange: Rubiaceae; Pink: Solanaceae; Black: Cruciferae; Purple: Gramineae; Red circle: MsDWF4"

Fig. 5

Prediction of kinase-specific phosphorylation sites of MsDWF4"

Fig. 6

Tissue-specific expression pattern of MsDWF4"

Fig. 7

Relative expression of MsDWF4 gene under different stress treatments A, C, E and G are the MsDWF4 expressions of the shoot part under corresponding treatment, and B, D, F and H are the MsDWF4 expressions in the root under corresponding treatment. *: Significant difference at P<0.05, **: Significant difference at P<0.01. Error bar is the standard error SE (n=3) for each group. The same as below"

Fig. 8

Relative expression of MsDWF4 under different hormone treatments A, C, E and G are the MsDWF4 expressions in the shoot under the corresponding treatment, and B, D, F and H are the MsDWF4 expressions in the root under the corresponding treatments"

Fig. 9

Identification of positive transgenic lines Marker:Direct-Load TM Star marker D5000"

Fig. 10

Expression level analysis of MsDWF4 gene in overexpression lines by using qRT-PCR"

Fig. 11

Expression level of MsDWF4 and antioxidant enzyme activity analysis in CK and transgenic lines under 200 mmol·L-1 NaCl treatment Different small letters indicated significant difference at 5% level"

[1] 任继周, 王素香. 甘肃中部的紫花苜蓿在不同草原类型上的表现. 甘肃农业大学学报, 1959(4):1-9.
REN J Z, WANG S X. Performance of alfalfa in different grassland types in central Gansu Province. Journal of Gansu Agricultural University, 1959(4):1-9. (in Chinese)
[2] EARDLY B D, HANNAWAY D, BOTTOMLEY P J. Nitrogen nutrition and yield of seedling alfalfa as affected by ammonium nitrate fertilization. Agronomy Journal, 1985,77(1):57-62.
[3] 王加亭. 2011年我国紫花苜蓿生产与进口情况. 中国畜牧业, 2013(13):90.
WANG J T. Production and import of Alfalfa in China in 2011, China Animal Industry, 2013(13):90. (in Chinese)
[4] 黄文惠. 优良牧草--紫花苜蓿. 农业科技通讯, 1978(4):36.
HUANG W H. Alfalfa, a good forage. Bulletin of Agricultural Science and Technology, 1978(4):36. (in Chinese)
[5] 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013,46(8):1694-1705.
doi: 10.3864/j.issn.0578-1752.2013.08.020
WANG X J, ZHANG S Z, LING S S, DENG Z G, JIN L. Advances in study on bio-energy utilization of stem cell wall components in Alfalfa ( Medicago satival L.). Scientia Agricultura Sinica, 2013,46(8):1694-1705. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.08.020
[6] 杨小翠. 苜蓿遗传多样性及3个主栽品种的产草量和品质分析[D]. 滁州: 安徽科技学院, 2017.
YANG X C. Analysis of genetic diversity and forage production and quality of three major varieties in Alfalfa[D]. Chuzhou: Anhui Science and Technology University, 2017. (in Chinese)
[7] 张文浩, 侯龙鱼, 杨杰, 宋世环, 毛小涛, 张强强, 白文明, 潘庆民, 周青平. 高寒地区苜蓿人工草地建植技术. 科学通报, 2018,63(17):1651-1663.
ZHANG W H, HOU L Y, YANG J, SONG S H, MAO X T, ZHANG Q Q, BAI W M, PAN Q M, ZHOU Q P. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018,63(17):1651-1663. (in Chinese)
[8] 李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展. 植物生理学报, 2015,51(11):1787-1798.
[9] 熊书. 油菜素内酯的生物合成及信号转导研究进展. 教育教学论坛, 2015(19):111-112.
XIONG S. Progress in brassinolide biosynthesis and signal transduction. Education Forum, 2015(19):111-112. (in Chinese)
[10] 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导. 植物生理学报, 2017,53(3):291-307.
SUN C, LI J. Biosynthesis, catabolism, and signal transduction of brassinosteroids. Plant Physiology Communications, 2017,53(3):291-307. (in Chinese)
[8] LI H, ZUO Q Y, TU S B. Advances in brassinosteroid biosynthesis and metabolism. Plant Physiology Communications, 2015,51(11):1787-1798. (in Chinese)
[11] MITCHELL J W, MANDAVA N, WORLEY J F, PLIMMER J R, SMITH M V. Brassins-a new family of plant hormones from rape pollen. Nature, 1970,225(5237):1065-1066.
doi: 10.1038/2251065a0 pmid: 16056912
[12] GROVE M, SPENCER G F, ROHWEDDER W K. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 1979,281(5728):216-217.
doi: 10.1038/281216a0
[13] CHOE S, FUJIOKA S, NOGUCHI T, TAKATSUTO S, YOSHIDA S, FELDMANN K A. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal, 2001,26(6):573-582.
doi: 10.1046/j.1365-313x.2001.01055.x pmid: 11489171
[14] 任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展. 植物学报, 2015,50(6):768-778.
REN H Y, WANG L, MA Q X, WU G. Progress in biosynthetic pathways of brassinosteroids. Chinese Bulletin of Botany, 2015,50(6):768-778. (in Chinese)
[15] FUJIOKA S, TAKATSUTO S, YOSHIDA S. An early C-22 oxidationbranch in the brassinosteroid biosynthetic pathway. Plant Physiology, 2002,130(2):930-939.
doi: 10.1104/pp.008722 pmid: 12376657
[16] SHIMADA Y, GODA H, NAKAMURA A, TAKATSUTO S, FUJIOKA S, YOSHIDA S. Organ-specific expression of brassinosteroid- biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology, 2003,131(1):287-297.
doi: 10.1104/pp.013029 pmid: 12529536
[17] 束红梅, 郭书巧, 巩元勇, 蒋璐, 朱静雯, 倪万潮. 陆地棉油菜素内酯信号基因GhBES1家族的鉴定及表达分析. 华北农学报, 2017,32(4):7-12.
SHU H M, GUO S Q, GONG Y Y, JIANG L, ZHU W J, NI W C. Identification and expression analysis of the brassinosteroid signal gene ghbes1 family in upland cotton. Acta Agriculturae Boreali-Sinica, 2017,32(4):7-12. (in Chinese)
[18] LIU T S, ZHANG J P, WANG M Y, WANG Z Y, LI G F, QU L, WANG G Y. Expression and functional analysis of Zm DWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.) Plant Cell Reports, 2007,26(12):2091-2099.
doi: 10.1007/s00299-007-0418-4
[19] 王阳, 陈永富, 常晓涵, 王璇, 李娜, 高永峰. 异源过表达胡杨PeDWF4基因提高烟草对非生物胁迫的耐性. 基因组学与应用生物学, 2017,36(10):4242-4249.
WANG Y, CHEN Y F, CHANG X H, WANG X, LI N, GAO Y F. Heterologous overexpression of PeDWF4 gene in Populus euphratica enhance tolerance of tobacco to abiotic stress. Genomics and Applied Biology, 2017,36(10):4242-4249. (in Chinese)
[20] ZHOU X Y, ZHANG N, YANG J W, TANG X, WEN Y K, SI H J. Functional analysis of StDWF4 gene in response to salt stress in potato. Plant Physiology and Biochemistry, 2018(125):63-73.
[21] 兰彩耘. 超量表达AtDWF4基因对芥菜生长发育及抗寒性的影响[D]. 重庆: 西南大学, 2016.
LAN C Y. Effect of AtDWF4 gene overexpression on growth,development and cold resistance in Brassica juncea[D]. Chongqing: Southwest University, 2016. (in Chinese)
[22] LI K R, FENG C H. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 2011,33(4):1293-1300.
doi: 10.1007/s11738-010-0661-0
[23] 李程, 梁宝魁, 王晓峰. 油菜素内酯提高蔬菜作物抗逆性的研究进展. 中国蔬菜, 2015(11):12-18.
LI C, LIANG B K, WANG X F. Research progress on brassinosteroids for improving stress resistance vegetable crops. China Vegetables, 2015(11):12-18. (in Chinese)
[24] VARDHINI B V, ANJUM N A. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defence system. Frontiers in Environmental Science, 2015: 2(67):1-16.
[25] 陆晓民, 杨威. 油菜素内酯对氯化钠胁迫下黄瓜幼苗的缓解效应. 应用生态学报, 2013,24(5):1409-1414.
LU X M, YANG W. Alleviation effects of brassinolide on cucumber seeding under NaCl stress. Chinese Journal of Applied Ecology, 2013,24(5):1409-1414. (in Chinese)
[26] 王秀峰, 王利波, 王学国, 于永辉, 王健鹂, 马艺荞. 外源油菜素内酯诱导辣椒幼苗抗盐性的研究. 辣椒杂志, 2012,10(4):23-25.
WANG X F, WANG L B, WANG X G, YU Y H, WANG J L, MA Y Q. Resistance to salt stress in hot pepper seedling induced by exogenous brassinolide. Journal of China Capsicum, 2012,10(4):23-25. (in Chinese)
[27] DING H D, ZHU X H, ZHU Z W, YANG S J, ZHA D S, WU X X. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 2012,56(4):767-770.
doi: 10.1007/s10535-012-0108-0
[28] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001,25(4):402.
doi: 10.1006/meth.2001.1262
[29] HORSCH R B, ROGERS S G, FRALEY R T. Transgenic plants. Cold Spring Harbor Symposia on Quantitative Biology, 1985,50:433-437.
doi: 10.1101/sqb.1985.050.01.054 pmid: 3868487
[30] 张海杰, 蒋丹, 曹宇虹. 蛋白质分离纯化技术的相关研究进展. 化工管理, 2017(20):173.
ZHANG H J, JIANG D, CAO Y H. Progress in research of protein separation and purification technique. Chemical Enterprise Management, 2017(20):173. (in Chinese)
[31] FUJIYAMA K, HINO T, KANADANI M, WATANABE B, JAE L H, MIZUTANI M, NAGANO S. Structural insights into a key step of brassinosteroid biosynthesis and its inhibition. Nature Plants, 2019,5(6):589-594.
doi: 10.1038/s41477-019-0436-6 pmid: 31182839
[32] ASAMI T, NAKANO T, NAKASHITA H, SEKIMATA K, SHIMADA Y, YOSHIDA S. The influence of chemical genetics on plant science: Shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. Journal of Plant Growth Regulation, 2003,22(4):336-349.
doi: 10.1007/s00344-003-0065-0
[33] ASAMI T, MIZUTANI M, FUJIOKA S, GODA H, MIN Y K, SHIMADA Y, NAKANO T, TAKATSUTO S, MATSUYAMA T, NAGATA N, SAKATA K, YOSHIDA S. Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. Journal of Biological Chemistry, 2001,276(28):25687-25691.
doi: 10.1074/jbc.M103524200 pmid: 11319239
[34] TAKAKUSAGI Y, MANITA D, KUSAYANAGI T, IZAGUIRRE- CARBONELL J, TAKAKUSAGI K, KURAMOCHI K, IWABATA K, KANAI Y, SAKAGUCHI K, SUGAWARA F. Mapping a disordered portion of the Brz2001-binding site on a plant monooxygenase, DWARF4, using a quartz-crystal microbalance biosensor-based T7 phage display. Assay and Drug Development Technologies, 2013,11(3):206-215.
doi: 10.1089/adt.2012.478
[35] 梁前进, 王鹏程, 白燕荣. 蛋白质磷酸化修饰研究进展. 科技导报, 2012,30(31):73-79.
doi: 10.3981/j.issn.1000-7857.2012.31.011
LIANG Q J, WANG P C, BAI Y R. Summarization on the progress in protein phosphorylation. Science & Technology Review, 2012,30(31):73-79. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2012.31.011
[36] CROW T, XUE-BIAN J J. Proteomic analysis of post-translational modifications in conditioned Hermissenda. Neuroscience, 2010,165(4):1182-1190.
doi: 10.1016/j.neuroscience.2009.11.066 pmid: 19961907
[37] BANCOS S, NOMURA T, SATO T, MOLNÁR G, BISHOP G J, KONCZ C, YOKOTA T, NAGY F, SZEKERES M. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 2002,130(1):504-513.
doi: 10.1104/pp.005439 pmid: 12226529
[38] SAHNI S, PRASAD B D, LIU Q, GRBIC V, SHARPE A, SINGH S P, KRISHNA P. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 2016,6:28298.
doi: 10.1038/srep28298 pmid: 27324083
[39] DIVI U K, KRISHNA P. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation, 2010,29(4):385-393.
doi: 10.1007/s00344-010-9150-3
[40] 周杰. 活性氧、激素互作、自噬和转录因子在番茄和拟南芥逆境胁迫响应中的作用机理和调控[D]. 杭州: 浙江大学, 2014.
ZHOU J. Action mechanisms and regulation of reactive oxygen species, phytohormone interaction, transcription factors and autophagy in tomato and Arabidopsis stress response[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
[41] 王琳. AT14A在拟南芥响应PEG模拟干旱胁迫中的功能分析[D]. 扬州: 扬州大学, 2016.
WANG L. Functional analysis of AT14A in response to PEG simulated drought stress in Arabidopsis[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[42] 王玲. 油菜素内酯对盐和高温胁迫下羊草生理特性的影响[D]. 重庆: 西南大学, 2017.
WANG L. Effect of brassinolide on physiological characteristics of Leymus chinensis(Trin) under salt stress and high temperature stress[D]. Chongqing: Southwest University, 2017. (in Chinese)
[43] 钱琼秋. 硅提高黄瓜耐盐性的生理和生化机制研究[D]. 杭州: 浙江大学, 2006.
QIAN Q Q. Studies on physiological and biochemical mechanisms of salt tolerance improved by silicon in cucumber(Cucumis sativus L.)[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
[44] 王露. 胡杨DWF4(PeDWF4)异源表达对新疆杨生长发育、愈伤组织诱导和耐盐性的影响[D]. 兰州: 兰州大学, 2016.
WANG L. Effects of heterotopic expression of Populus euphratica DWF4(PeDWF4) on the growth, callus formation and salt tolerance of Populus bolleana[D]. Lanzhou: Lanzhou University, 2016. (in Chinese)
[45] 刚爽. ABA对亚高温强光胁迫下番茄叶片光合作用影响及分子机制研究[D]. 沈阳: 沈阳农业大学, 2016.
GANG S. Studies on regulation of ABA on photosynthesis and molecular mechanism of tomato under subhigh temperature and high light intensity stress[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese)
[46] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应. 作物学报, 2018,44(3):343-356.
DUAN F M, LUO Q L, LU X L, QI N W, LIU X S, SONG W W. Cloning of the key gene ZmCYP90B1 in brassinosteroids biosynthesis from Zea mays and its response to to adversity stresses. The Crop Journal, 2018,44(3):343-356. (in Chinese)
[47] BANCOS S. Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 2002,130(1):504-513.
doi: 10.1104/pp.005439 pmid: 12226529
[48] SUN Y, FAN X Y, CAO D M, TANG W Q, HE K, ZHU J Y, HE J X, BAI M Y, ZHU S W, OH E, PATIL S, KIM T, JI H K, WONG W H, RHEE S Y, WANG Z Y. Integration of Brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 2010,19(5):765-777.
doi: 10.1016/j.devcel.2010.10.010
[49] MATHUR J, MOLNÁR G, FUJIOKA S, TAKATSUTO S, SAKURAI A, YOKOTA T, ADAM G, VOIGT B, NAGY F, MAAS C, SCHELL J, KONCZ C, SZEKERES M. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. The Plant Journal for Cell and Molecular Biology, 1998,14(5):593-602.
doi: 10.1046/j.1365-313x.1998.00158.x pmid: 9675902
[50] REN C, HAN C Y, PENG W, HUANG Y, PENG Z H, XIONG X Y, ZHU Q, GAO B D, XIE D X. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiology, 2009,151(3):1412-1420.
doi: 10.1104/pp.109.140202 pmid: 19741050
[51] KIM B, FUJIOKA S, KWON M, JEON J Y, CHOE S. Arabidopsis brassinosteroid-overproducing gulliver3-D/dwarf4- D mutants exhibit altered responses to jasmonic acid and pathogen. Plant Cell Reports, 2013,32(7):1139-1149.
doi: 10.1007/s00299-012-1381-2
[52] CHUNG Y, MAHARJAN P M, LEE O, FUJIOKA S, JANG S, KIM B, TAKATSUTO S, TSUJIMOTO M, KIM H, CHO S, PARK T, CHO H, HWANG I, CHOE S. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 2011,66(4):564.
doi: 10.1111/j.1365-313X.2011.04513.x pmid: 21284753
[53] YOSHIMITSU Y, TANAKA K, FUKUDA W, ASAMI T, YOSHIDA S, HAYASHI K, KAMIYA Y, JIKUMARU Y, SHIGETA T, NAKAMURA Y, MATSUO T, OKAMOTO S. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS ONE, 2011,6(8):e23851.
doi: 10.1371/journal.pone.0023851 pmid: 21909364
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[3] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[4] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[5] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[6] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[7] ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen,YU AiLi. Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 3950-3963.
[8] DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape [J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
[9] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[10] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[11] ZHAO QiuFang, MA HaiYang, JIA LiQiang, CHEN Shu, CHEN HongLiang. Genome-Wide Identification and Expression Analysis of SRO Genes Family in Maize [J]. Scientia Agricultura Sinica, 2018, 51(15): 3009-3019.
[12] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[13] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
[14] XUAN Ning, LIU Xu, ZHANG Hua, CHEN Gao, LIU Guo-xia, BIAN Fei, YAO Fang-yin. The Response of a Putative Maize Zinc-Finger Protein Gene ZmAN14 in Transgenic Tabacco to Abiotic Stress [J]. Scientia Agricultura Sinica, 2015, 48(5): 841-850.
[15] ZHANG Hai-li, YOU Shi-dong, ZHANG Hao, GAO Jing, LI Sheng-hui, ZHANG Li-hui, XING Ji-hong, WANG Feng-ru, DONG Jin-gao. Structure Analysis of SSMP and Its Function in Salt Tolerance in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2015, 48(4): 804-812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!