Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3455-3466.doi: 10.3864/j.issn.0578-1752.2020.17.004

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L.

LIU JiaoJiao1(),WANG XueMin2,MA Lin2,CUI MiaoMiao2,CAO XiaoYu2,ZHAO Wei1()   

  1. 1College of Agriculture, Henan University of Science and Technology/College of Tree Peony, Luoyang 471023, Henan
    2Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2019-10-30 Accepted:2020-02-16 Online:2020-09-01 Published:2020-09-11
  • Contact: Wei ZHAO E-mail:1192771534@qq.com;zhaowei1@haust.edu.cn

Abstract:

【Objective】The WRKY gene family in plants encodes a large group of transcription factors (TFs) that play essential roles in diverse stress responses, developmental and physiological processes. It laid a foundation for further research on the role of WRKY transcription factor in alfalfa stress-resistant molecular regulation by analyzing the role of MsWRKY42 transcription factor in alfalfa. 【Method】MsWRKY42 sequence was obtained by homologous alignment and sequence characteristics of it were analyzed by online bioinformatics tools. The phylogenetic tree of MsWRKY42 and Arabidopsis WRKY genes was constructed by MEGA-X. The putative cis-elements in promoter region of MsWRKY42 was analyzed by PlantCARE. The real-time quantitative PCR (qRT-PCR) was used to analyze the expression pattern of MsWRKY42 in different organs and its response to abiotic including NaCl (0.3 mol·L-1), PEG(15%), 4℃, 40℃, low phosphorus and ABA (0.1×10-3mol·L-1). The fusion expression vector of pCAMBIA1300- WRKY-GFP was constructed and delivered into Nicotiana benthamiana by Agrobacterium mediated method to determine the subcellular localization of WRKY protein. The yeast one-hybrid technique was used to analyze the binding activity of MsWRKY42 and the cis-acting element W-box.【Result】The gene contained a 1 692 bp open reading frame encoding 563 amino acids. Multiple sequence alignment and phylogenetic tree analysis results indicated that the protein is a member of the IIb sub-group WRKY family and contains a WRKY conserved domain and a C2H2 zinc finger motif. It has the highest similarity to AtWRKY42 in the Arabidopsis family, therefore, named as MsWRKY42. A variety of cis-acting elements were identified in the promoter region of MsWRKY42, including regulatory elements such as stress response, hormone response, and diurnal regulation. Real-Time PCR analysis showed that MsWRKY42 had the highest expression in roots and leaves. The expression of MsWRKY42 was up-regulated by NaCl, PEG, low temperature, high temperature, low phosphorus and ABA treatments. Subcellular localization indicated that MsWRKY42 was mainly located on the nucleus in plant cells. The results of the binding activity analysis showed that MsWRKY42 was able to specifically bind to W-box.【Conclusion】MsWRKY42 is a typical transcription factor, which can specifically bind to cis-acting elements, and the protein is localized in the nucleus. The gene was expressed in different tissues of alfalfa, and was induced by NaCl, PEG, high temperature, low phosphorus and ABA treatment. It is speculated that the MsWRKY42 gene may play a role in response to multiple stress defense responses as a WRKY transcription factor.

Key words: alfalfa, WRKY transcription factor, abiotic stress, subcellular localization, binding activity analysis

Table 1

Promoter prediction by PlantCARE"

顺式作用元件
Cis-elements
序列
Sequence (5′-3′)
功能
Function
数量
No.
CGTCA-motif CGTCA 参与MeJA反应的顺式作用调节元件
Cis-acting regulatory element involved in the MeJA-responsiveness
2
GARE-motif TCTGTTG 赤霉素反应元件
Gibberellin-responsive element
1
I-box GTATAAGGCC 部分光响应元件
Part of a light responsive element
1
Box 4 ATTAAT 参与光响应的保守 DNA 模块的部分元件
Part of a conserved DNA module involved in light responsiveness
5
HD-Zip 3 GTAAT(G/C)ATTAC 蛋白质结合位点
Protein binding site
1
circadian CAAAGATATC 参与昼夜节律顺行调控元件
Cis-acting regulatory element involved in circadian control
1
TCCC-motif TCTCCCT 部分光响应元件
Part of a light responsive element
1
TGACG-motif TGACG 参与MeJA反应的顺式作用调节元件
Cis-acting regulatory element involved in the MeJA-responsiveness
2
3-AF3 binding site CACTATCTAAC 保守DNA模块阵列的一部分(CMA3)
Part of a conserved DNA module array (CMA3)
1
TATC-box TATCCCA 参与赤霉素反应的顺式作用元件
Cis-acting element involved in gibberellin-responsiveness
1
Sp1 GGGCGG 光响应元件
Light responsive element
1
TC-rich repeats ATTCTCTAAC 参与防御和胁迫反应的顺式作用元件
Cis-acting element involved in defense and stress responsiveness
1
GCN4_motif TGAGTCA 参与胚乳表达的顺式调控元件
Cis-regulatory element involved in endosperm expression
1
CAAT-box CAAAT 启动子和增强子区域中常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
16
G-Box CACGTG 参与光响应顺式作用元件
Cis-acting regulatory element involved in light responsiveness
5
GATA-motif GATAGGG 部分光响应元件
Part of a light responsive element
1
O2-site GATGA(C/T)(A/G)TG(A/G) 参与玉米醇溶蛋白代谢调节的顺式作用调节元件
Cis-acting regulatory element involved in zein metabolism regulation
1
GT1-motif GGTTAAT 光响应元件
Light responsive element
2
TATA-box TATA 在转录起始的-30 附近的核心启动子元件
Core promoter element around -30 of transcription start
41
ARE AAACCA 厌氧诱导必需元件
Cis-acting regulatory element essential for the anaerobic induction
2
GC-motif CCCCCG 参与缺氧特异性诱导的类似增强子元件
Enhancer-like element involved in anoxic specific inducibility
1
TCA-element CCATCTTTTT 参与水杨酸响应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
1
TCT-motif TCTTAC 部分光响应元件
Part of a light responsive element
2
ATCT-motif AATCTAATCC 部分参与光响应的保守DNA区域
Part of a conserved DNA module involved in light responsiveness
2
ABRE CACGTG 参与脱落酸反应的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
5

Fig. 1

PCR amplified product of MsWRKY42 M: Trans2K Plus II Marker; 1: PCR amplified product"

Fig. 2

Amino acid sequence alignment of MsWRKY42 with other homologous proteins"

Fig. 3

A phylogenetic tree constructed based on WRKYs of Arabidopsis thaliana and MsWRKY42"

Fig. 4

Prediction of second structure of MsWRKY42 The red line represents the extension chain; The purple line represents the random coil; The blue line represents the alphahelix"

Fig. 5

Prediction of the tertiary structure of MsWRKY42"

Fig. 6

Subcellular localization of MsWRKY42 in lower epidermal cells of Nicotiana benthamiana The images are taken by green fluorescence, visible light, merged green fluorescence and visible light. 35S::GFP: The Agrobacterium tumefaciens strain carrying the empty vector pCAMBIA1300-GFP. 35S::MsWRKY42::GFP: The A. tumefaciens strain carrying the recombinant vector pCAMBIA1300- MsWRKY42-GFP. Scale bar = 25 μm"

Fig. 7

Expression pattern of MsWRKY42 in different tissues of alfalfa Different letters indicate statistical difference (P<0.05). The same as below"

Fig. 8

The expression of MsWRKY42 gene under different stress"

Fig. 9

Binding activity analysis of MsWRKY42 protein A: 3-AT concentration screening; B: Growth state of four yeast transformants diluted in different times on SD/-His-Leu-ura medium"

[1] 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012,21(6):296-305.
doi: 10.11686/cyxb20120638
ZHANG L Q, ZHANG F Y, HASI A G L, Research progress on alfalfa salt tolerance. Acta Prataculturae Sinica, 2012,21(6):296-305. (in Chinese)
doi: 10.11686/cyxb20120638
[2] HAN X, KUMAR D, CHEN H, WU S, KIM J Y. Transcription factor-mediated cell-to-cell signalling in plants. Journal of Experimental Botany, 2014,65(7):1737-1749.
doi: 10.1093/jxb/ert422 pmid: 24347464
[3] BIRKENBIHL R P, LIU S, SOMSSICH I E. Transcriptional events defining plant immune responses. Current Opinion in Plant Biology, 2017,38:1-9.
doi: 10.1016/j.pbi.2017.04.004 pmid: 28458046
[4] JIANG J, MA S, YE N, JIANG M, CAO J, ZHANG J. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017,59(2):86-101.
doi: 10.1111/jipb.12513 pmid: 27995748
[5] PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 2016,7:760.
doi: 10.3389/fpls.2016.00760 pmid: 27375634
[6] CARVALHO R F, CAMPOS M L, AZEVEDO R A. Salt stress in plants. Journal of Integrative Plant Biology, 2013,53(12):920-929.
doi: 10.1111/j.1744-7909.2011.01081.x pmid: 22040287
[7] QIAO Z, LI C L, ZHANG W. WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Molecular Biology, 2016,91:53-65.
pmid: 26820136
[8] JIANG Y, LIANG G, YU D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012,5(6):1375-1388.
doi: 10.1093/mp/sss080 pmid: 22930734
[9] LI H, GAO Y, XU H, DAI Y, DENG D, CHEN J. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regulation, 2013,70(3):207-216.
[10] YANG G Y, ZHANG W H, SUN Y D, ZHANG T T, HU D, ZHAI M Z. Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses. Biologia Plantarum, 2017,61(4):611-621.
[11] ZOU C, JIANG W, YU D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany, 2010,61(14):3901-3914.
pmid: 20643804
[12] WANG F, HOU X, TANG J, WANG Z, WANG S, JIANG F, LI Y. A novel cold-inducible gene from Pakchoi ( Brassica campestrisssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Molecular Biology Reports, 2012,39(4):4553-4564.
doi: 10.1007/s11033-011-1245-9 pmid: 21938429
[13] WU X, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009,28(1):21-30.
pmid: 18818929
[14] DEVAIAH B N, KARTHIKEYAN A S, RAGHOTHAMA K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 2007,143(4):1789-1801.
doi: 10.1104/pp.106.093971 pmid: 17322336
[15] CHEN Y F, LI L Q, XU Q, KONG Y H, WANG H, WU W H. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low PI stress in Arabidopsis. The Plant Cell, 2009,21(11):3554-3566.
doi: 10.1105/tpc.108.064980 pmid: 19934380
[16] SU T, XU Q, ZHANG F C, CHEN Y, LI L Q, WU W H, CHEN Y F. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiology, 2015,167(4):1579-1591.
doi: 10.1104/pp.114.253799 pmid: 25733771
[17] DAI X, WANG Y, ZHANG W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Journal of Experimental Botany, 2017,67(3):947-960.
doi: 10.1093/jxb/erv515 pmid: 26663563
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[19] 范晓江, 郭小华, 牛芳芳, 杨博, 江元清. 拟南芥WRKY61转录因子的转录活性与互作蛋白分析. 西北植物学报, 2018,38(1):1-8.
FAN X J, GUO X H, NIU F F, YANG B, JIANG Y Q. Exploring the transcriptional activity and interacting proteins of WRKY61 transcription factors in Arabidopsis thaliana. Acta Botanica Boreali- Occidentalia Sinica, 2018,38(1):1-8. (in Chinese)
[20] FAN Q, SONG A, JIANG J, ZHANG T, SUN H, WANG Y, CHEN S, CHEN F. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE, 2016,11:e0150572.
doi: 10.1371/journal.pone.0150572 pmid: 26938878
[21] DUAN M R, NAN J, LIANG Y H, MAO P, LU L, LI L, WEI C, LAI L, LI Y, SU X D. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Research, 2007,35(4):1145-1154.
doi: 10.1093/nar/gkm001 pmid: 17264121
[22] CIOLKOWSKI I, WANKE D, BIRKENBIHL R P. Studies on DNA- binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008,68(1/2):81-92.
[23] ATTREE S M, FOWKE L C. Embryogeny of gymnosperms: Advances in synthetic seed technology of conifers. Plant Cell, Tissue & Organ Culture, 1993,35(1):1-35.
[24] DE ZELICOURT A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 2016,21:677-685.
doi: 10.1016/j.tplants.2016.04.004 pmid: 27143288
[25] LIU Z Q, YAN L, WU Z, MEI C, LU K, YU Y T, LIANG S, ZHANG X F, WANG X F, ZHANG D P. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. Journal of Experimental Botany, 2012,18(63):6371-6392.
[26] GRUBER V, BLANCHET S, DIET A, ZANAF O, BOUALEM A, KAKAR K, ALUNNI B, UDVARDI M, FRUGIER F, CRESPI M. Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Molecular Genetics & Genomics, 2009,281(1):55-66.
doi: 10.1007/s00438-008-0392-8 pmid: 18987888
[27] LI S, FU Q, CHEN L, HUANG W, YU D. Arabidopsis thaliana WRKY25, WRKY26 and WRKY33 coordinate induction of plant thermotolerance. Planta, 2011,233:1237-1252.
doi: 10.1007/s00425-011-1375-2 pmid: 21336597
[28] KIM C Y, VO K, NGUYEN C D, JEONG D H, LEE S K, KUMAR M, KIM S R, PARK S H, KIM J J, JEON J S. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports, 2016,10(1):13-23.
[29] KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent Phosphate homeostasis in Arabidopsis. PLoS Genetics, 2011,7(3):1-11.
[30] WANG H, XU Q, KONG Y H, CHEN Y, DUAN J Y, WU W H, CHEN Y F. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiology, 2014,164(4):2020-2029.
doi: 10.1104/pp.113.235077 pmid: 24586044
[31] WEI W, CUI M Y, YANG H, GAO K, XIE Y G, JIANG Y, FENG J Y. Ectopic expression of FvWRKY42, a WRKY transcription factor from the T diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Science, 2018,275:60-74.
doi: 10.1016/j.plantsci.2018.07.010 pmid: 30107882
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[4] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[5] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[6] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[7] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[8] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[9] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[10] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[11] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[12] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[13] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[14] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[15] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!