Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1627-1637.doi: 10.3864/j.issn.0578-1752.2021.08.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress

ZHAO JingJing1(),ZHOU Nong1(),CAO MingYu2   

  1. 1College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404000
    2College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
  • Received:2020-06-30 Accepted:2020-08-17 Online:2021-04-16 Published:2021-04-25
  • Contact: Nong ZHOU E-mail:nl140828@163.com;erhaizn@126.com

Abstract:

Because plants grow steadily, they cannot escape adversity by moving. Most of plants live in environments where they are constantly exposed to one or combinations of various abiotic stressors, such as extreme temperatures, salinity, drought, and excessive light, which can severely limit plant distribution, growth and development, quality, yield and even survival. Plants can only adapt to the environment by changing their morphological structure and physiological and biochemical reactions, or by releasing chemical substances to affect the growth and development of other surrounding plants, so as to change the microenvironment and make the environment more suitable for their growth. Methylglyoxal (MG) as a normal physiological metabolites, is formed from various metabolic pathways in plants, among them the glycolysis pathway provides the most important source, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system, and it converts to D-lactate finally. Under normal growth conditions, basal levels of MG remain low in plants; However, when plants are exposed to abiotic stress, MG can be accumulated to much higher levels. Stress-induced MG, as a toxic molecule, inhibited different developmental processes, including seed germination, photosynthesis and root growth, destroyed cell proliferation and survival, controlled of the redox status of cells, and many other aspects of general metabolism. The increase of MG content eventually leads to the destruction of biological macromolecule proteins, DNA, RNA, lipids and biological membranes. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. The aim of this review was to summarize the mechanisms of MG in plants under abiotic stress. In this review, the recent findings regarding MG synthesis and degradation metabolism in plants under abiotic stress was summarized.

Key words: abiotic stress, methylglyoxal, glyoxalase

Fig. 1

The structural formula of methylglyoxal"

Fig. 2

A diagrammatic representation of methylglyoxal (MG) synthesis in plants"

Fig. 3

A diagrammatic representation of methylglyoxal (MG) detoxification in plants"

Table 1

Effects of abiotic stress on methylglyoxal content and glyoxalase system in plants"

植物
Plant species
胁迫类型
Types of stress
丙酮醛浓度
Concentration of MG
乙二醛酶活性
Glyoxalase activity
文献来源
Reference
油菜籽
Rapeseed
(Brassica napus L.)
盐胁迫 NaCl stress
ND
Gly I ↓; Gly II ↓ [45]
镉胁迫 Cadmium stress [15,46]
干旱 Drought Gly I ↑; Gly II ↓ [24]
小麦
Wheat
(Triticum aestivum L.)
高温 Heat
ND
Gly I ↑; Gly II ↑ [47]
盐胁迫 NaCl stress Gly I ↓; Gly II ↓
[44]
砷胁迫 Arsenic stress [48]
绿豆
Mung bean
(Vigna radiata L.)
低温胁迫 Chilling stress


Gly I ↑; Gly II ↓ [49]
铝胁迫 Aluminum stress [33]
干旱或/和高温
Drought or/and heat
[16]
Gly I ↓; Gly II ↑ (High temperature) [41]
Gly I ↑; Gly II ↑ (Drought) [40]
盐胁迫
Salt stress
ND Gly I ↑; Gly II ↑ [50]
Gly I ↓; Gly II ↓ [29,30]
镉胁迫
Cadmium stress
ND Gly I ↑; Gly II ↓
[51]
[32]
水稻
Rice
(Oryza sativa L.)
盐胁迫
Salt stress
ND Gly I ↓; Gly II ↓ [42]
Gly I ↓; Gly II ↑ [43]


Gly I ↑; Gly II ↑ [52-53]
镉胁迫 Cadmium stress Gly I ↑; Gly II ↓ [54]
Gly I ↑; Gly II ↓ [34]
Gly I ↑; Gly II ↑ [35]
砷胁迫 Arsenic stress Gly I ↓; Gly II ↑ [36]
铜胁迫 Copper stress Gly I ↑; Gly II ↑ [37]
豌豆 Pea
(Pisum sativum L.)
镉胁迫
Cadmium stress
Gly I ↑; Gly II ↓ [38]
玉米 Maize
(Zea mays L.)
碱胁迫 Alkaline stress Gly I ↓; Gly II ↓ [39]
盐胁迫 Salt stress Gly I ↑; Gly II ↓ [31]

Table 2

Glyoxalase genes overexpressed in transgenic plants exhibiting enhanced abiotic stress tolerance"

基因 Gene 植物种类 Plant species 胁迫表现 Response phenotype 参考文献 Reference
Gly I 烟草 Tobacco (Nicotiana tabacum) 提高植物的耐盐性
Improved salt stress tolerance
[18,72-73]
黑棘豆 Black gram (Vigna mungo) [74]
拟南芥 (Arabidopsis thaliana) [75]
水稻 Rice (Oryza sativa) [76]
小麦 Wheat (Triticum aestivum L.) 提高植物的耐锌性
Improved zinc tolerance
[77]
Gly II 水稻 Rice (Oryza sativa) 提高植物的耐盐性
Improved salt stress tolerance
[78-79]
芥菜 Mustard (Beassica juncea) [80]
烟草 Tobacco (Nicotiana tabacum) [81]
拟南芥 (Arabidopsis thaliana) 提高植物的耐盐和淹水性
Improved salt and anoxic stress tolerance
[82]
Gly I + Gly II 烟草 Tobacco (Nicotiana tabacum) 提高植物的耐盐性
Improved salt stress tolerance
[83-84]
西红柿 Tomato (Solanum lycopersicum Mill.) [85]
[1] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010,48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016
[2] 刘聪, 董腊嫒, 林建中, 刘选明. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展. 生命科学研究, 2019,23(3):253-258.
LIU C, DONG L A, LIN J Z, LIU X M. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses. Life Science Research, 2019,23(3):253-258. (in Chinese)
[3] 李格, 孟小庆, 蔡敬, 董婷婷, 李宗芸, 朱明库. 活性氧在植物非生物胁迫响应中功能的研究进展. 植物生理学报, 2018,54(6):951-959.
LI G, MENG X Q, CAI J, DONG T T, LI Z Y, ZHU M K. Advances in the function of reactive oxygen species in plant responses to abiotic stresses. Plant Physiology Journal, 2018,54(6):951-959. (in Chinese)
[4] LAL M, KUMARI A, POOJA S S. Reactive oxygen species, reactive nitrogen species and oxidative metabolism under waterlogging stress//Reactive oxygen, nitrogen and sulfur species in Plants. John Wiley and Sons, Ltd, 2019: 777-812.
[5] DAGMAR P, NADA W. Reactive nitrogen species and role of NO in abiotic stress. Emerging Technologies and Management of Crop Stress Tolerance, 2014,2(2):249-266.
[6] 何甜甜, 李春梅, 李晨丽, 陈圆, 孟庆贺, 吕建新. 丙酮醛抗肿瘤机制的研究进展. 中国细胞生物学学报, 2016,38(4):449-454.
HE T T, LI C M, LI C L, CHEN Y, MENG Q H, LÜ J X. Advance on the anti-tumor mechanism of methylglyoxal. Chinese Journal of Cell Biology, 2016,38(4):449-454. (in Chinese)
[7] LEONCINI G. The role of alpha-oxoaldehydes in biological systems. Italian Journal of Biochemistry, 1979,28(11):285-294.
[8] 陈磊, 栾军, 费晓庆, 吴斌, 沈崇钰, 张睿. 高效液相色谱法检测新西兰Manuka蜂蜜中的甲基乙二醛. 色谱, 2014,32(2):189-193.
doi: 10.3724/SP.J.1123.2013.10011
CHEN L, LUAN J, FEI X Q, WU B, SHEN C Y, ZHANG R. Determination of methylglyoxal in Manuka honey of New Zealand by high performance liquid chromatography. Chinese Journal of Chromatography, 2014,32(2):189-193. (in Chinese)
doi: 10.3724/SP.J.1123.2013.10011
[9] MAVRIC E, WITTMANN S, BARTH G. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition and Food Research, 2008,52(4):483-489.
doi: 10.1002/mnfr.200700282 pmid: 18210383
[10] 邹婷, 冯艳丽, 付正茹, 牟翠翠, 翟金清. 五氟苄基羟胺衍生与GC/MS联用分析大气中的单羰基化合物和多羰基化合物. 环境科学学报, 2012,32(11):2718-2724.
ZOU T, FENG Y L, FU Z R, MOU C C, ZHAI J Q. Determination of mono- and dicarbonyls in the atmosphere using gas chromatography/ mass spectrometry after PFBHA derivatization. Acta Scientiae Circumstantiae, 2012,32(11):2718-2724. (in Chinese)
[11] 李维宏. 测定丙酮醛水溶液中丙酮醛含量的新方法. 浙江化工, 2000,31(4):38-39.
LI W H. A new method for determining the content of methylglyoxal in the aqueous solution of methylglyoxal. Zhejiang Chemical, 2000,31(4):38-39. (in Chinese)
[12] KAUR C, KUSHWAHA H R, MUSTAFIZ A, PAREEK A, SOPORY K S, SINGLA-PAREEK S L. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015,6(682). doi: 10.3389/fpls.2015.00682.
[13] MEYERHOF O, LOHMANN K. Über die enzymatische Gleichgewichtsreaktion zwischen Hexosedi phosphorsäure und Dioxyacetonphophorsäure. Science of Nature, 1934,22(14):220-221.
[14] RICHARD J P. Mechanism for the formation of methylglyoxal from trisephosphates. Biochemical Society Transactions, 1993,21(2):549-553.
doi: 10.1042/bst0210549 pmid: 8359530
[15] HASANUZZAMAN M, NAHAR K, GILL S S, ALHARBY H F, RAZAFINDRABE B H, FUJITA M. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: An intrinsic study on antioxidant defense and glyoxalase systems. Frontiers in Plant Science, 2017,8(682):115.
[16] NAHAR K, HASANUZZAMAN M, ALAM M M, RAHMAN A, MAHMUD J, SUZUKI T, FUJITA M. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: Osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 2017,254(1):445-460.
doi: 10.1007/s00709-016-0965-z pmid: 27032937
[17] ESPARTERO J, SANCHEZAGUAYO I, PARDO J M. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Molecular Biology, 1995,29(6):1223-1233.
doi: 10.1007/BF00020464 pmid: 8616220
[18] YADAV S K, SINGLA-PAREEK S L, RAY M, REDDY M K, SOPORY S K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 2005,337(1):61-67.
doi: 10.1016/j.bbrc.2005.08.263 pmid: 16176800
[19] PHILLIPS S A, THORNALLEY P J. The formation of methylglyoxal from triose phosphates: Investigation using a specific assay for methylglyoxal. European Journal of Biochemistry, 1993,212(1):101-105.
doi: 10.1111/j.1432-1033.1993.tb17638.x pmid: 8444148
[20] POMPLIANO D L, PEYMAN A, KNOWLES J R. Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry, 1990,29(13):3186-3194.
doi: 10.1021/bi00465a005 pmid: 2185832
[21] VISTOLI G, MADDIS D, CIPAK A, ZARKOVIC N, CARINI M, ALDINI G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radical Research, 2013,47(S1):3-27.
doi: 10.3109/10715762.2013.815348
[22] KALAPOS M P. Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications. Toxicology Letters, 1999,110(3):145-175.
doi: 10.1016/s0378-4274(99)00160-5 pmid: 10597025
[23] THORNALLEY P J. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-A role in pathogenesis and antiproliferative chemotherapy. General Pharmacology, 1996,27(4):565-573.
doi: 10.1016/0306-3623(95)02054-3 pmid: 8853285
[24] HASANUZZAMAN M, FUJITA M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 2011,143(3):1758-1776.
doi: 10.1007/s12011-011-8998-9
[25] RABBANI N, THORNALLEY P J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids, 2012,42(4):1133-1142.
doi: 10.1007/s00726-010-0783-0
[26] GHOSH A, KUSHWAHA H R, HASAN M R, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports, 2016,6(1):18358.
doi: 10.1038/srep18358
[27] YAMAUCHI Y, HASEGAWA A, TANINAKA A, MIZUTANI M, SUGIMOTO Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. Journal of Biological Chemistry, 2010,286(9):6999-7009.
doi: 10.1074/jbc.M110.202226
[28] SIMPSON P J, TANTITADAPITAK C, REED A M, MATHER O C, BUNCE C M, WHITE S A, RIDE J P. Characterization of two novel aldo-keto reductases from Arabidopsis: Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. Journal of Molecular Biology, 2009,392(2):470-480.
[29] KAMRUN N, MIRZA H, ANISUR R, ALAM M M, MAHMUD J, SUZUKI T, FUJITA M. Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Frontiers in Plant Science, 2016,7(1104). doi: 10.3389/fpls.2016.01104.
[30] NAHAR K, HASANUZZAMAN M, ALAM M M, FUJITA M. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum, 2015,59(4):745-756.
doi: 10.1007/s10535-015-0542-x
[31] ROHMAN M M, TALUKDER M A, HOSSAIN M G, UDDIN M S, BISWAS M A, AHSAN A S, CHOWDHURY M Z. Saline sensitivity leads to oxidative stress and increases the antioxidants in presence of proline and betaine in maize (Zea mays L.) inbred. Plant Omics Journal, 2016,9(1):35-47.
[32] NAHAR K, HOSSAIN M A, ALAM M M, RAHMAN A, SUZUKI T, FUJITA M. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and Environmental Safety, 2016,126(apr.):245-255.
doi: 10.1016/j.ecoenv.2015.12.026
[33] NAHAR K, HASANUZZAMAN M, SUZUKI T, FUJITA M. Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology, 2016,26(1):1-16.
doi: 10.1007/s10646-016-1742-7 pmid: 27819118
[34] RAHMAN A, MOSTOFA M G, NAHAR K, HASANUZZAMAN M, FUJITA M. Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Brazilian Journal of Botany, 2016,39(2):393-407.
doi: 10.1007/s40415-015-0240-0
[35] MOSTOFA M G, RAHMAN A, ANSARY M M U, WATAANABE A, FUJITA M, TRAN L P. Hydrogen sulfide modulates cadmium- induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 2015,5:14078.
doi: 10.1038/srep14078 pmid: 26361343
[36] ANISUR R, GOLAM M M, MAHABUB A M, NAHAR K, HASANUZZAMAN M, FUJITA M. Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Research International, 2015,2015:340812.
doi: 10.1155/2015/340812 pmid: 26798635
[37] MOSTOFA M G, HOSSAIN M A, FUJITA M, TRAN L P. Physiological and biochemical mechanisms associated with trehalose- induced copper-stress tolerance in rice. Scientific Reports, 2015,5:11433.
doi: 10.1038/srep11433 pmid: 26073760
[38] SUMIRA J, NASSER A M, LEONARD W, ALAM P, SIDDIQUE K H, AHMAD P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biology, 2018,18(1):146.
doi: 10.1186/s12870-018-1359-5 pmid: 30012086
[39] MIR M A, JOHN R, ALYEMENI M N, ALAM P, AHMAD P. Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Scientific Reports, 2018,8(1):2831.
doi: 10.1038/s41598-018-21097-3 pmid: 29434207
[40] NAHAR K, HASANUZZAMAN M, ALAM M M, FUJITA M. Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. Aob Plants, 2015, 7: lv069. doi: 10.1093/aobpla/plv069.
doi: 10.1093/aobpla/plaa065 pmid: 33442464
[41] NAHAR K, HASANUZZAMAN M, ALAM M M, FUJITA M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 2015,112:44-54.
doi: 10.1016/j.envexpbot.2014.12.001
[42] EL-SGABRAWI H, KUMAR B, KAUL T, REDDY M K, SINGLA- PAREEK S L, SOPORY S K. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma, 2010,245(1/4):85-96.
doi: 10.1007/s00709-010-0144-6
[43] HASANUZZAMAN M, ALAM M M, RAHMAN A, HASANUZZAMAN M, NAHAR K, FUJITA M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Research International, 2014,2014(757219):1-17.
[44] NAHAR K, HASANUZZAMAN M, ALAM M M, FUJITA M. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. International Journal of Molecular Sciences, 2015,16(12):30117-30132.
doi: 10.3390/ijms161226220 pmid: 26694373
[45] HOSSAIN M A, FUJITA M. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiology and Molecular Biology of Plants, 2010,16(1):19-29.
doi: 10.1007/s12298-010-0003-0
[46] HOSSAIN M A, HASANUZZAMAN M, FUJITA M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010,16(3):259-272.
doi: 10.1007/s12298-010-0028-4
[47] RAHMAN A, NAHAR K, HASANUZZAMAN M, FUJITA M. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science, 2016,7(e0114571). doi: 10.3389/fpls.2016.00609.
[48] RAHMAN A, HOSSAIN M A, MAHMUD J A, NAHAR K, HASANUZZAMAN M, FUJITA M. Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants, 2016,22(3):291-306.
doi: 10.1007/s12298-016-0371-1 pmid: 27729716
[49] RAHMAN A, NAHAR K, HASANUZZAMAN M. Manganese- induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. Comptes Rendus Biologies, 2016,339(11/12):462-474.
doi: 10.1016/j.crvi.2016.08.002
[50] HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 2011,5(4):353-365.
doi: 10.1007/s11816-011-0189-9
[51] HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Selenium- induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research, 2011,143(3):1704-1721.
doi: 10.1007/s12011-011-8958-4
[52] HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium- induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biological Trace Element Research, 2012,149(2):248-261.
doi: 10.1007/s12011-012-9419-4
[53] HASANUZZAMAN M, NAHAR K, ALAM M M, FUJITA M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Australian Journal of Crop Science, 2012,6(8):1314-1323.
[54] HASANUZZAMAN M, FUJITA M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 2013,22(3):584-596.
doi: 10.1007/s10646-013-1050-4
[55] KAUR C, GHOSH A, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 2014,42(2):485-490.
doi: 10.1042/BST20130242 pmid: 24646265
[56] MAETA K, IZAWA S, INOUE Y. Methylglyoxal, a metabolite derived derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/crz1-mediated pathway in saccharomyces cerevisiae. Journal of Biological Chemistry, 2005,280(1):253-260.
doi: 10.1074/jbc.M408061200
[57] SAITO R, YAMAMOTO H, MAKINO A, SUGIMOTO T, MIYAKE C. Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O2 at photosystem I: A symptom of plant diabetes. Plant Cell and Environment, 2011,34(9):1454-1464.
doi: 10.1111/pce.2011.34.issue-9
[58] HOQUE M A, URAJI M, BANU M N A, MORI I C, NAKAMURA Y, MURATA Y. The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Bioscience Biotechnology Biochemistry, 2010,74(10):2124-2126.
doi: 10.1271/bbb.100393
[59] HOQUE M A, URAJI M, BANU M N A, MORI I C, NAKAMURA Y, MURATA Y. Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum. Journal of Biochemical and Molecular Toxicology, 2012,26(8):315-321.
doi: 10.1002/jbt.21423
[60] THONALLEY P J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabolism and Drug Interactions, 2008,23(1/2):125-150.
[61] FERGUSON G P, TöTEMEYER S, MACLEAN M, BOOTH I R. Methylglyoxal production in bacteria: Suicide or survival. Archives of Microbiology, 1998,170(4):209-218.
doi: 10.1007/s002030050635 pmid: 9732434
[62] HOQUE T S, OKUMA E, URAJI M, FURUICHI T, SASAKI T, HOQUE M A, NAKAMURA Y, MURATA Y. Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K + channel activity in Arabidopsis. Bioscience Biotechnology and Biochemistry, 2012,76(3):617-619.
doi: 10.1271/bbb.110885
[63] ENGQVIST M, DRINCOVICH M F, FLUGGE U I, MAURINO V G. Two d-2-Hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. Journal of Biological Chemistry, 2009,284(37):25026-25037.
doi: 10.1074/jbc.M109.021253
[64] MANO J, MIYATAKE F, HIRAOKAi E. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta, 2009,230(4):639-648.
doi: 10.1007/s00425-009-0964-9
[65] CHEN M J, THELEN J J. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell, 2010,22(5):77-90.
[66] WIENSTROER J, MARTIN K M, KUNZ H H, FLUGGE U, MAURINO V G. D-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. Febs Letters, 2012,586(1):36-40.
[67] CHO Y H, HONG J W, YOO K S D. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiology, 2012,158(4):1955-1964.
[68] UPADHYAYA C P, VENKATESH J, GURURANI M A, ASNIN L, SHARMA K, AJAPPALA H, PARK W. Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnology Letters, 2011,33(11):2297-2307.
[69] HOSSAIN M A, HOSSAIN M Z, MASAYUKI F. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian Journal of Crop Science, 2009,3(2):53-64.
[70] LIN F, XU J, SHI J. Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Molecular Biology Reports, 2010,37(2):729-735.
[71] MUSTAFIZ A, SINGH A K, PAREEK A. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Functional and Integrative Genomics, 2011,11(2):293-305.
[72] VEENA REDDY V S, SOPORY S K. Glyoxalase I from Brassica juncea: Molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant Journal, 1999,17(4):385-395.
[73] WU C, MA C, PAN Y, GONG S, ZHAO C, CHEN S, LI H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Journal of Plant Research, 2013,126(2):415-425.
[74] BHOMKAR P, UPADHYAY C P, SAXENA M, MUTHUSAMY A, PRAKASH S, POOGGIN M, HOHN T, SARIN B N. Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Molecular Breeding, 2008,22(2):169-181.
[75] ROY S D, SAXENA M, BHOMKAR P S, POOGGIN M, HOHN T, BHALLA-SARIN N. Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoter. Plant Cell Tissue and Organ Culture, 2008,95(1):1-11.
[76] VERMA M, VERMA D, JAIN R K, SOPORY S, WU R. Overexpression of glyoxalase I gene confers salinity tolerance in transgenic japonica and indica rice plants. News Letter, 2005,22:58-62.
[77] LIN F, XU J, SHI J, LI H, LI B. Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Molecular Biology Reports, 2010,37(2):729-735.
[78] SINGLA-PAREEK S L, YADAV S K, PAREEK A, REDDY M K, SOPORY S K. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 2008,17(2):171-180.
pmid: 17387627
[79] WANI S H, GOSAL S S. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biologia Plantarum, 2011,55(3):536-540.
[80] SAXENA M, ROY S D, SINGLA-PAREEK S L, SOPORY S, SARIN N. Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Science Journal, 2011,5(23):23-28.
[81] GHOSH A, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant of Journal, 2014,80(1):93-105.
[82] DEVANATHAN S, ERBAN A, PEREZ-TORRE R, KOPKA J, MAKAROFF C A. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. PLoS ONE, 2014,9(4):e95971.
[83] YADAV S K, SINGLA-PAREEK S L, REDDY M K, SOPORY S K. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Letters, 2005,579:6265-6271.
pmid: 16253241
[84] SINGLAPAREEK S L, REDDY M K, SOPORY S K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the Natlonal Academy of Sciences of the United States of America, 2003,100(25):14672-14677.
[85] ALVAREZ M F, INOSTROZA-BLANCHETEAU C, TIMMERMANN T. Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Molecular Biology Reports, 2013,40(4):3281-3290.
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[3] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[4] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[5] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[6] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[7] ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen,YU AiLi. Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 3950-3963.
[8] DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape [J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
[9] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[10] ZHAO QiuFang, MA HaiYang, JIA LiQiang, CHEN Shu, CHEN HongLiang. Genome-Wide Identification and Expression Analysis of SRO Genes Family in Maize [J]. Scientia Agricultura Sinica, 2018, 51(15): 3009-3019.
[11] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[12] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
[13] XUAN Ning, LIU Xu, ZHANG Hua, CHEN Gao, LIU Guo-xia, BIAN Fei, YAO Fang-yin. The Response of a Putative Maize Zinc-Finger Protein Gene ZmAN14 in Transgenic Tabacco to Abiotic Stress [J]. Scientia Agricultura Sinica, 2015, 48(5): 841-850.
[14] LI Yue, LIU Xiao-dong, XIE Zong-ming, DONG Yong-mei, WU Dong-mei, CHEN Shou-yi. Cloning and Function Analysis of Cotton Transcription Factor GhGT-2 [J]. Scientia Agricultura Sinica, 2015, 48(24): 4872-4884.
[15] AN Ze-Wei-1, XIE Li-Li-1, 2 , WANG Qi-Tong-1, LI Ya-Chao-1, CHENG Han-1, HU Yan-Shi-1, HUANG Hua-Sun-1. Molecular Cloning and Functional Characterization of Transcription Factor HbERF1 in Hevea brasiliensis [J]. Scientia Agricultura Sinica, 2014, 47(8): 1622-1633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!