Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4709-4727.doi: 10.3864/j.issn.0578-1752.2021.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.)

LÜ ShiKai(),MA XiaoLong,ZHANG Min,DENG PingChuan,CHEN ChunHuan,ZHANG Hong(),LIU XinLun(),JI WanQuan()   

  1. College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2021-02-10 Accepted:2021-04-07 Online:2021-11-16 Published:2021-11-19
  • Contact: Hong ZHANG,XinLun LIU,WanQuan JI E-mail:lvshikaiyd@163.com;zhangh1129@nwafu.edu.cn;liuxxlun@126.com;jiwanquan2008@126.com

Abstract:

【Objective】 In the present study, the common wheat (Triticum aestivum L.) was exposed to the stress of stripe rust and powdery mildew. Then the cloned TaNAC structural variation transcripts formed by alternative splicing were analyzed. And putative information of TaNAC genes regulated by miRNAs was annotated. It would shed light on the study of TaNAC genes in response to fungal stress of wheat at the post-transcriptional level. 【Method】 After common wheat resistance germplasm N9134 being infected stripe rust and powdery mildew respectively, the leaves were sampled at eight time points. Then a large number of TaNAC transcripts were cloned from the mixed sample pool. Referring to the wheat genome annotation of Chinese Spring (IWGSC RefSeqv1.1), the sequence structure characteristics of TaNAC structural variation transcripts formed by alternative cutting were revealed. Using bioinformatics software and online tools, the coding products derived from these TaNAC transcripts were compared and analyzed, including the functional domain, advanced structure, physical and chemical properties, subcellular localization and other characteristics. And then, one pair of TaNAC structural variation transcripts were selected to further verify the predicted subcellular localizations by onion epidermis transient expression system. Meanwhile, five groups of TaNAC transcripts were conducted transcriptional self-activation experiments in yeast. It was aimed to analyze the effects of structural variation, which caused by alternative splicing on transcriptional regulation activity. Additionally, using the miRBase database, the targeting relationship between TaNAC genes and tae-miRNAs was forecasted and established in wheat. 【Result】 In this study, 35 TaNAC structural variation transcripts were formed by alternative splicing form 13 TaNAC genes, and they all were cloned from common wheat N9134 after infecting by stripe rust and powdery mildew. After analyzing, it was found that there were differences in the nucleic acid sequence structure of different structural variation transcripts from the same TaNAC gene, as well as in the functional domain, advanced structure, physicochemical properties and subcellular localization of their corresponding coding products. And they might be with different transcriptional regulatory activities. Moreover, different TaNAC genes could be with different patterns of alternative splicing, and the coded products of the structural variation transcripts from different TaNAC genes showed diversity in characteristics of structure, physical and chemical properties, transcriptional regulatory activity and so on. By analysis of TaNAC genes and their target tae-miRNAs, which is in the coding region, the result showed that the binding sites of tae-miRNAs were all in the non-alternative splicing region. 【Conclusion】 In conclusion, TaNAC genes might be involved in the response of wheat to fungal stress through the post-transcriptional regulation of alternative splicing. And the tae-miRNAs targeted to TaNAC genes could function post-transcriptional regulation independently of alternative splicing.

Key words: wheat, TaNAC transcription factor, microRNA, alternative splicing, post-transcriptional regulation, stress responses

Table 1

The primer sequences of TaNAC structural variation transcripts with alternative splicing in the gene cloning experiment"

分组
Groups
TaNAC基因
TaNAC genes
正向引物序列
Forward primer sequences (5′-3′)
反向引物序列
Reversed primer sequences (5′-3′)
1 TaNAC_NTL5_7B ATGACCCACCCTTCCTCGTC TTACTTGCCGTAGATGCACAG
2 TaNAC008_3A ATGGAAACTCTACGTGACATGGCT CTACAAACTGATCCCACCACGGT
3 TaNAC013_3A ATGACATGGTGCAATAGCTTC TCAGGGACCAAAGCCCGTC
4 TaNAC017_5A ATGGAGACCCCGCCGCCG TCATGTAGAGGACTTCCATAAC
5 TaNAC011_7D ATGGACGACGGTGCAACG TCACCCATGATGATCCTGGT
6 TaNAC017_5D ATGGAGACCCCGCCGCCG CTTTGTGCATCATCTTGTCATG
7 TaNAC024_3D ATGAACAGGGGTCACATCAGC CTATCCATGATGATCTTGGTTGTC
8 TaNAC039_6B ATGGACACTTTCTCCCATGTTC CTATTTCCACAGATGAGCCGAG
9 TaNAC073_3B ATGGACAAGGGTCACCCAGGGTAC CTAGTACTGGTAAGGCCATTGCAC
10 TaNAC092_2A TCCAGACGGCAAATTCCAG TCAGTAGCCCCACGGCGC
11 TaNAC092_2D ATGGAGCACAGCGAGCAGG TCAGTAGCCCCACGGCGC
12 TaNAC024_3A ATGAACAGGGGTCACATCAGC CTATGAGATCTCCCGGTTCTTCTC
13 TaNAC092_2B ATGGAGCACAGCGAGCAGG AGCTTGCTTGGTCAGTAGCC

Fig. 1

The quality detection of total RNA extracted from N9134 being infected by stripe rust and powdery mildew M: Marker DL2000; S: Samples under the infection of stripe rust; P: Samples under the infection of powdery mildew; 1-8: The infected leaves of N9134 were harvested at the eight time points of 0 h (hour), 12, 24, 36, 48, 72, 96 and 120 h after being inoculated"

Fig. 2

Partial amplification product of TaNAC genes from the mixed cDNA in this study M: Marker DL2000; 1-5 were the cDNA amplification products of TaNAC_NTL5_7B, TaNAC008_3A, TaNAC013_3A, TaNAC092_2A and TaNAC092_2B, respectively; White arrows were the target bands of the amplification products"

Table 2

The 35 TaNAC structural variation transcripts cloned from 13 genes by alternative splicing"

分组
Groups
TaNAC转录本名称
Names of TaNAC transcripts
序列长度
Sequence length (bp)
GenBank登录号
Accessions
对应中国春参考基因组的基因
The corresponding genes in IWGSC RefSeq v1.1
是否外显子跳跃
Exon skipping or not
是否内含子保留
Intron retention or not
转录本编码方式
Coding mode of transcripts
1 TaNAC_NTL5_7B.2 1932 MN747301 TraesCS7B02G196900 是 Yes 否 No 正常 N
TaNAC_NTL5_7B.3 879 MN747304 TraesCS7B02G196900 正常 N
2 TaNAC008_3A.1 1446 MN747252 TraesCS3A02G176500 是 Yes 否 No 正常 N
TaNAC008_3A.2 597 MN747253 TraesCS3A02G176500 正常 N
3 TaNAC013_3A.1 1017 MN747260 TraesCS3A02G245900 是 Yes 否 No 正常 N
TaNAC013_3A.2 1017 MN747262 TraesCS3A02G245900 正常 N
TaNAC013_3A.3 974 MN786410 TraesCS3A02G245900 提前终止 P
4 TaNAC017_5A.2 2193 MN747191 TraesCS5A02G271500 是 Yes 否 No 正常 N
TaNAC017_5A.3 1701 MN747193 TraesCS5A02G271500 正常 N
TaNAC017_5A.4 1181 MN786415 TraesCS5A02G271500 分段 S
TaNAC017_5A.5 1237 MN786416 TraesCS5A02G271500 分段 S
TaNAC017_5A.6 1308 MN747194 TraesCS5A02G271500 正常 N
5 TaNAC011_7D.1 1467 MN747256 TraesCS7D02G365200 否 No 是 Yes 正常 N
TaNAC011_7D.2 865 MN786437 TraesCS7D02G365200 分段 S
6 TaNAC017_5D.2 2160 MN747189 TraesCS5D02G279100 否 No 是 Yes 正常 N
TaNAC017_5D.4 2052 IWGSC TraesCS5D02G279100 正常 N
7 TaNAC024_3D.1 1320 MN747206 TraesCS3D02G109400 否 No 是 Yes 正常 N
TaNAC024_3D.2 1317 MN747210 TraesCS3D02G109400 正常 N
TaNAC024_3D.3 1457 MN786432 TraesCS3D02G109400 分段 S
8 TaNAC039_6B.3 1056 MN747281 TraesCS6B02G286200 否 No 是 Yes 正常 N
TaNAC039_6B.5 1171 MN786440 TraesCS6B02G286200 分段 S
9 TaNAC073_3B.3 966 MN747291 TraesCS3B02G410500 否 No 是 Yes 正常 N
TaNAC073_3B.4 1134 MN786442 TraesCS3B02G410500 分段 S
TaNAC073_3B.6 979 MN786412 TraesCS3B02G410500 提前终止 P
10 TaNAC092_2A.3 1068 MN747237 TraesCS2A02G338300 否 No 是 Yes 正常 N
TaNAC092_2A.5 1325 MN786430 TraesCS2A02G338300 分段 S
11 TaNAC092_2D.6 1062 MN747248 TraesCS2D02G324700 否 No 是 Yes 正常 N
TaNAC092_2D.7 1403 MN786434 TraesCS2D02G324700 分段 S
TaNAC092_2D.8 1405 MN786435 TraesCS2D02G324700 分段 S
12 TaNAC024_3A.1 1320 MN747211 TraesCS3A02G107400 是 Yes 是 Yes 正常 N
TaNAC024_3A.3 1317 MN747208 TraesCS3A02G107400 正常 N
TaNAC024_3A.6 1612 MN786431 TraesCS3A02G107400 分段 S
TaNAC024_3A.7 1401 MN786419 TraesCS3A02G107400 分段 S
13 TaNAC092_2B.1 1065 MN747239 TraesCS2B02G343600 是 Yes 是 Yes 正常 N
TaNAC092_2B.3 708 MN747234 TraesCS2B02G343600 正常 N
TaNAC092_2B.7 1167 MN786429 TraesCS2B02G343600 分段 S

Fig. 3

The structure pattern of TaNAC transcripts with alternative splicing (Exon skipping or intron retention) Blue: Exon; Gray: Intron"

Table 3

Structural characteristics and physicochemical properties of the peptides encoded by the 13 groups of normal encoding transcripts selected from the cloned TaNAC transcripts"

分组
Groups
克隆的转录本名称
Name of cloned transcripts
肽链长度
Peptide length (aa)
NAM结构域
起止位置
NAM start_end (aa)
跨膜结构域位置
Topology of TMHs
脂肪系数
Aliphatic index
亲水性总
平均值
GRAVY
不稳定系数
Instability index
理论等电点
pI
预测的亚细胞定位
Predicted subcellular localization
1 TaNAC_NTL5_7B.2 643 23—149 o620—642i 71.12 -0.424 36.32 4.63 细胞核 Nu
TaNAC_NTL5_7B.3 292 无 None o269—291i 70.45 -0.114 40.41 4.61 胞外/细胞核 Ex / Nu
2 TaNAC008_3A.1 481 10—136 o448—470i 72.45 -0.554 35.92 5.67 细胞核/细胞质 Nu / Cy
TaNAC008_3A.2 198 10—136 无 None 65.56 -0.809 37.89 9.08 细胞质 Cy
3 TaNAC013_3A.1 338 73—212 无 None 63.08 -0.656 35.37 8.83 细胞核/线粒体 Nu / Mi
TaNAC013_3A.2 338 73—212 无 None 63.08 -0.655 35.48 8.83 细胞核/线粒体/细胞质
Nu / Mi / Cy
TaNAC013_3A.3 266 73—212 无 None 67.18 -0.676 36.58 9.15 细胞核/线粒体 Nu / Mi
4 TaNAC017_5A.2 730 13—136 o695—717i 69.74 -0.511 49.35 4.55 细胞核 Nu
TaNAC017_5A.3 566 无 None o531—553i 72.86 -0.403 51.11 4.18 细胞核/胞外 Nu / Ex
TaNAC017_5A.6 435 13—136 o400—422i 76.00 -0.476 50.17 5.92 细胞核 Nu
TaNAC017_5A.4 分段 S — — — — — — — — — — — —
TaNAC017_5A.5 分段 S — — — — — — — — — — — —
5 TaNAC011_7D.1 488 57—226 无 None 53.79 -0.843 55.96 7.53 细胞核 Nu
TaNAC011_7D.2 分段 S — — — — — — — — — — — —
6 TaNAC017_5D.2 719 13—136 o683—705i 69.61 -0.490 49.99 4.57 细胞核 Nu
TaNAC017_5D.4* 683 13—136 o647—669i 70.26 -0.528 50.36 4.62 细胞核 Nu
7 TaNAC024_3D.1 439 45—186 无 None 59.13 -0.813 48.33 6.88 细胞核 Nu
TaNAC024_3D.2 438 44—185 无 None 59.27 -0.806 48.24 6.76 细胞核 Nu
TaNAC024_3D.3 分段 S — — — — — — — — — — — —
8 TaNAC039_6B.3 351 8—135 无 None 58.97 -0.755 38.99 6.57 细胞核 Nu
TaNAC039_6B.5 分段 S — — — — — — — — — — — —
9 TaNAC073_3B.3 321 46—188 无 None 54.7 -0.902 37.18 8.6 细胞核 Nu
TaNAC073_3B.6 278 46—188 无 None 59.64 -0.828 33.43 8.83 细胞核 Nu
TaNAC073_3B.4 分段 S — — — — — — — — — — — —
10 TaNAC092_2A.3 355 14—138 无 None 64.14 -0.412 30.91 7.21 细胞核/叶绿体 Nu / Ch
TaNAC092_2A.5 分段 S — — — — — — — — — — — —
11 TaNAC092_2D.6 353 14—138 无 None 65.33 -0.397 33.56 6.86 细胞核/叶绿体 Nu / Ch
TaNAC092_2D.7 分段 S — — — — — — — — — — — —
TaNAC092_2D.8 分段 S — — — — — — — — — — — —
12 TaNAC024_3A.1 439 45—186 无 None 58.45 -0.828 46.99 6.76 细胞核 Nu
TaNAC024_3A.3 438 44—185 无 None 58.58 -0.821 46.9 6.67 细胞核 Nu
TaNAC024_3A.6 分段 S — — — — — — — — — — — —
TaNAC024_3A.7 分段 S — — — — — — — — — — — —
13 TaNAC092_2B.1 354 14—138 无 None 65.14 -0.386 31.18 6.67 叶绿体/细胞核 Ch / Nu
TaNAC092_2B.3 235 14—136 无 None 57.87 -0.506 31.91 5.27 胞外/细胞核 Ex / Nu
TaNAC092_2B.7 分段 S — — — — — — — — — — — —

Table 4

Comparison of the secondary structure of peptides encoded by the TaNAC transcripts with alternative splicing in groups"

分组Groups 转录本
Transcripts
肽链长度
Peptide length (aa)
α螺旋中氨基酸的数量
Number of aa in alpha helix
α螺旋中氨基酸的比例
Percentage of aa in alpha helix (%)
β折叠中氨基酸的数量
Number of aa in beta turn
β折叠中氨基酸的比例
Percentage of aa in beta turn (%)
延伸链中氨基酸的数量
Number of aa in extended strand
延伸链中氨基酸的比例
Percentage of aa in extended strand (%)
无规则卷曲中氨基酸的数量
Number of aa in random coil
无规则卷曲中
氨基酸的比例
Percentage of aa in random coil (%)
1 TaNAC_NTL5_7B.2 643 140 21.77 25 3.89 95 14.77 383 59.56
TaNAC_NTL5_7B.3 292 51 17.47 13 4.45 45 15.41 183 62.67
2 TaNAC008_3A.1 481 137 28.48 25 5.20 60 12.47 259 53.85
TaNAC008_3A.2 198 29 14.65 12 6.06 43 21.72 114 57.58
3 TaNAC013_3A.1 338 82 24.26 29 8.58 66 19.53 161 47.63
TaNAC013_3A.2 338 89 26.33 19 5.62 64 18.93 166 49.11
TaNAC013_3A.3 266 61 22.93 17 6.39 57 21.43 131 49.25
4 TaNAC017_5A.2 730 213 29.18 60 8.22 106 14.52 351 48.08
TaNAC017_5A.3 566 163 28.80 35 6.18 85 15.02 283 50.00
TaNAC017_5A.6 435 121 27.82 37 8.51 75 17.24 202 46.44
6 TaNAC017_5D.2 719 217 30.18 54 7.51 99 13.77 349 48.54
TaNAC017_5D.4 683 198 28.99 50 7.32 97 14.20 338 49.49
9 TaNAC073_3B.3 321 76 23.68 24 7.48 56 17.45 165 51.40
TaNAC073_3B.6 278 63 22.66 32 11.51 54 19.42 129 46.40
13 TaNAC092_2B.1 354 67 18.93 15 4.24 46 12.99 226 63.84
TaNAC092_2B.3 235 87 37.02 21 8.94 26 11.06 101 42.98

Fig. 4

Advanced structure analysis of alternatively spliced products of TaNAC008_3A and TaNAC092_2B a and b: The predicted results of secondary and tertiary structure of peptides; 1-4: The peptides encoded by the transcripts of TaNAC008_3A.1, TaNAC008_3A.2, TaNAC092_2B.1 and TaNAC008_3A.3, respectively; —: Extended strand; —: Beta turn; —: Alpha helix; —: Random coil"

Fig. 5

The subcellular localization of TaNAC013_3A.2 and TaNAC013_3A.3 using the transient expression system of onion epidermal cells"

Fig. 6

Comparative analysis of transcriptional activation of some structural variant transcripts of TaNAC genes a: Growth of yeast Y2H Gold positive strain transformed by recombinant pGBKT7 vector with different target fragments in SD/Trp/X-α-gal solid medium. b: Growth of yeast strains corresponding to the recombinant vectors of the two structural variant transcripts of TaNAC008_3A and the negative and positive control vectors in SD/-Trp, SD/-Trp/-his/-Ade and SD/-Trp/ABA solid media. In a and b, A-E are the row numbers of the samples, and 1-4 are the column numbers. After combination of the row and column numbers, A1-E1 represent Y2H Gold positive yeast strains transformed with recombinant pGBKT7 vectors with different target fragments, as detailed in Table 5. E2: The positive control yeast strain transformed with pGBKT7-53+pGADT7-T vectors, E3: The negative control strain transformed with pGBKT7 vector"

Table 5

Results of transcriptional activation of 17 structural variant transcripts from five TaNAC genes"

图6中的编号
Number in Fig. 6
转录本名称
Transcripts
插入片段的长度
Length of insert fragment (bp)
是否具有激活功能 Activation or not
SD/-Trp SD/-Trp/X-α-gal SD/-Trp/AbA SD/-Trp/-His/-Ade
A1 TaNAC008_3A.1 1446 是 Yes 是 Yes 是 Yes 是 Yes
A2 TaNAC008_3A.2 597 是 Yes 否 No 否 No 否 No
A3 TaNAC_NTL5_7B.2 1932 是 Yes 是 Yes 是 Yes 是 Yes
A4 TaNAC_NTL5_7B.3 879 是 Yes 否 No 是 Yes 是 Yes
B1 TaNAC013_3A.3 801/974 是 Yes 是 Yes 是 Yes 是 Yes
B2 TaNAC013_3A.3 974 是 Yes 是 Yes 是 Yes 是 Yes
B3 TaNAC013_3A.1 1017 是 Yes 是 Yes 是 Yes 是 Yes
B4 TaNAC013_3A.2 1017 是 Yes 否 No 是 Yes 是 Yes
C1 TaNAC092_2A.3 1068 是 Yes 是 Yes 是 Yes 是 Yes
C2 TaNAC092_2A.5 1175 是 Yes 否 No 是 Yes 是 Yes
C3 TaNAC092_2A.5 633(1—633)/1175 是 Yes 否 No 是 Yes 是 Yes
C4 TaNAC092_2A.5 483(693—1175)/1175 是 Yes 是 Yes 是 Yes 是 Yes
D1 TaNAC092_2B.1 1065 是 Yes 是 Yes 是 Yes 是 Yes
D2 TaNAC092_2B.3 708 是 Yes 是 Yes 是 Yes 是 Yes
D3 TaNAC092_2B.7 1167 是 Yes 否 No 是 Yes 是 Yes
D4 TaNAC092_2B.7 555(1—555)/1167 是 Yes 否 No 是 Yes 是 Yes
E1 TaNAC092_2B.7 483(685—1167)/1167 是 Yes 是 Yes 是 Yes 是 Yes

Table 6

The predicted relationship of the TaNAC transcripts in IWGSC RefSeq v1.1 and the tae-miRNA"

miRNA名称
miRNA ID
期望值
Expectation
抑制方式
Inhibition
TaNAC转录本名称
TaNAC transcripts ID
靶基因
长度
Length (bp)
是否可
变剪切
AS or not
NAM结构域编码起止位置
NAM coding start_end (bp)
miRNA结合起止位置
Target miRNA start_end (bp)
靶基因与miRNA匹配的序列
Target aligned fragment
(5′-3′)
匹配方式
Alignment
tae-miR164 1 裂解 Cleavage TraesCS5A02G049100.1 918 是 Yes 40—423 653—673 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS5A02G049100.2 921 是 Yes 40—423 656—676 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS5B02G054200.1 921 是 Yes 40—423 656—676 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS5B02G054200.2 924 是 Yes 40—423 659—679 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS5D02G059700.1 909 是 Yes 40—423 644—664 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS5D02G059700.2 912 是 Yes 40—423 647—667 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7A02G334800.1 1092 否 No 64—444 770—790 AGCUCGUGCCCUGCUUCUCCA :: :::::::::::::::::
TraesCS7A02G464100.1 924 否 No 34—435 653—673 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7A02G464800.1 927 否 No 34—438 656—676 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7B02G246300.1 1089 否 No 55—444 767—787 AGCUCGUGCCCUGCUUCUCCA :: :::::::::::::::::
TraesCS7B02G364600.1 924 否 No 34—435 653—673 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7B02G365300.1 918 否 No 34—429 647—667 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7D02G342300.1 1089 否 No 64—444 767—787 AGCUCGUGCCCUGCUUCUCCA :: :::::::::::::::::
TraesCS7D02G451700.1 939 否 No 34—438 656—676 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
TraesCS7D02G452500.1 927 否 No 34—435 656—676 AGCAAGUGCCCUGCUUCUCCA ::: ::::::::::::::::
1.5 裂解 Cleavage TraesCS2A02G338300.1 1068 否 No 40—414 680—700 CGCACGUGACCUGCUUCUCCA ::::::: ::::::::::::
TraesCS2B02G343600.1 1065 否 No 40—414 680—700 CGCACGUGACCUGCUUCUCCA ::::::: ::::::::::::
TraesCS2D02G324700.1 1062 否 No 40—414 677—697 CGCACGUGACCUGCUUCUCCA ::::::: ::::::::::::
2 裂解 Cleavage TraesCS7A02G305200.1 870 否 No 34—414 665—685 AGCAAGUGUCCUGCUUCUCCG ::: :::.:::::::::::.
TraesCS7B02G205600.1 879 否 No 34—414 674—694 AGCAAGUGUCCUGCUUCUCCG ::: :::.:::::::::::.
TraesCS7D02G302000.1 876 否 No 34—420 671—691 AGCAAGUGUCCUGCUUCUCCG ::: :::.:::::::::::.
miRNA名称
miRNA ID
期望值
Expectation
抑制方式
Inhibition
TaNAC转录本名称
TaNAC transcripts ID
靶基因
长度
Length (bp)
是否可
变剪切
AS or not
NAM结构域编码起止位置
NAM coding start_end (bp)
miRNA结合起止位置
Target miRNA start_end (bp)
靶基因与miRNA匹配的序列
Target aligned fragment
(5′-3′)
匹配方式
Alignment
tae-miR1128 3.5 裂解 Cleavage TraesCS3A02G339600.1 945 是 Yes 97—480 246—266 GUUCGGGAGCAGGGAGUGGUA :::::. : :::::::.:::
TraesCS3A02G339600.2 882 是 Yes 97—651 371—391 GUUCGGGAGCAGGGAGUGGUA :::::. : :::::::.:::
TraesCS3B02G371200.1 939 否 No 85—468 234—254 GUUCGGGAGCAGGGAGUGGUA :::::. : :::::::.:::
TraesCS3D02G333100.1 951 否 No 97—480 246—266 GUUCGGGAGCAGGGAGUGGUA :::::. : :::::::.:::
TraesCS4B02G328800.1 1044 否 No 34—414 180—200 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS4B02G328900.1 1059 否 No 49—429 195—215 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS4B02G329100.1 1059 否 No 52—432 198—218 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS4D02G325800.1 1065 否 No 52—432 198—218 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS5A02G500400.1 1017 否 No 22—402 195—215 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS5A02G500500.1 1110 否 No 52—432 168—188 AAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS5A02G500600.1 1071 否 No 52—432 198—218 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
TraesCS5A02G500700.1 2085 否 No 19—399 198—218 GAUCGGGGAGAGGGAGUGGUA ::::. ::::::::.:::
tae-miR408 3 翻译 Translation TraesCS6A02G378500.1 936 否 No 31—441 812—832 CCCAGGGCGGCGGCAGUGCAG ::::::.: ::::::::::
3.5 裂解 Cleavage TraesCS4B02G320300.1 1104 否 No 25—408 622—642 UUCAAGGAGGAGGCGGAGCAG .:: :::.:::::.: ::::
TraesCS4D02G316800.1 1104 否 No 25—408 622—642 UUCAAGGAGGAGGCGGAGCAG .:: :::.:::::.: ::::
TraesCS5A02G491700.1 1047 否 No 49—429 622—642 UUCAAGGAGGAGGCGGAGCAG .:: :::.:::::.: ::::
tae-miR9780 3 翻译 Translation TraesCSU02G120000.1 1239 否 No 22—450 136—156 GACGCGUACGCCGCCGACCCG : ::::: :. ::::::::::
3.5 裂解 Cleavage TraesCS6A02G065600.1 1227 否 No 22—444 136—156 GACGCGUACGGCGCAGAUCCG : ::::: :.:::: ::.:::
翻译 Translation TraesCSU02G119900.1 1284 否 No 22—450 136—156 GACGCGUACGCCGCCGAUCCG : ::::: :. ::::::.:::
tae-miR9676-5p 2.5 裂解 Cleavage TraesCS5B02G480900.1 900 是 Yes 58—351 755—776 ACCUCAGCUACGAUGACAUCCA : ::.:::::::::::::
TraesCS5B02G480900.2 984 是 Yes 58—435 839—860 ACCUCAGCUACGAUGACAUCCA : ::.:::::::::::::
tae-miR171a 3.5 裂解 Cleavage TraesCS4D02G175700.1 1074 否 No 28—408 747—767 GCUGAUGGCACGGCACGAUCA : :. ::::::::: :.::::
tae-miR444a 3.5 翻译 Translation TraesCS7A02G349500.1 1107 否 No 31—420 1011—1031 GGAGCAACUUGGAGGCAGCAG : :::::.: :::::::::.
tae-miR444b 3.5 翻译 Translation TraesCS7A02G349500.1 1107 否 No 31—420 1011—1031 GGAGCAACUUGGAGGCAGCAG : :::::.: :::::::::.
tae-miR9677a 3.5 裂解 Cleavage TraesCS1A02G276000.1 774 否 No 13—405 296—317 UGGUCUACUCCGCCGGCGGCCA .::::::.::..::::::

Table 7

Summary and analysis of miRNAs reported in Triticum aestivum, Zea mays, Oryza sativa, Brachypodium distachyon and Arabidopsis thaliana"

植物
Plants
miRNA前体数量
Number of miRNA precursors
成熟miRNA数量
Number of mature miRNAs
miRNA家族数量
Number of miRNA families
基因组大小
Genome sizes (G)
普通小麦 Triticum aestivum 122 125 99 14.5
玉米 Zea mays 174 325 31 2.4
水稻 Oryza sativa 604 738 342 0.5
二穗短柄草 Brachypodium distachyon 317 525 183 0.385
拟南芥 Arabidopsis thaliana 326 428 215 0.13

Fig. 7

Comparison of miRNA family members reported in Triticum aestivum, Zea mays, Oryza sativa, Brachypodium distachyon and Arabidopsis thaliana"

[1] FUJITA M, FUJITA Y, MARUYAMA K, SEKI M, HIRATSU K, OHME-TAKAGI M, TRAN L S, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 2004, 39(6): 863-876.
doi: 10.1111/tpj.2004.39.issue-6
[2] TRAN L S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MARUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16(9): 2481-2498.
doi: 10.1105/tpc.104.022699
[3] GUO Y, GAN S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal, 2006, 46(4): 601-612.
doi: 10.1111/tpj.2006.46.issue-4
[4] HU H, DAI M, YAO J, XIAO B, LI X, ZHANG Q, XIONG L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992.
[5] XU B, OHTANI M, YAMAGUCHI M, TOYOOKA K, WAKAZAKI M, SATO M, KUBO M, NAKANO Y, SANO R, HIWATASHI Y, MURATA T, KURATA T, YONEDA A, KATO K, HASEBE M, DEMURA T. Contribution of NAC transcription factors to plant adaptation to land. Science, 2014, 343(6178): 1505-1508.
doi: 10.1126/science.1248417
[6] LV S, GUO H, ZHANG M, WANG Q, ZHANG H, JI W. Large-scale cloning and comparative analysis of TaNAC genes in response to stripe rust and powdery mildew in wheat (Triticum aestivum L.). Genes (Basel), 2020, 11(9): 1073.
doi: 10.3390/genes11091073
[7] FENG H, DUAN X, ZHANG Q, LI X, WANG B, HUANG L, WANG X, KANG Z. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 2014, 15(3): 284-296.
doi: 10.1111/mpp.2014.15.issue-3
[8] RIECHMANN J L, HEARD J, MARTIN G, REUBER L, JIANG C, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE O J, SAMAHA R R, CREELMAN R, PILGRIM M, BROUN P, ZHANG J Z, GHANDEHARI D, SHERMAN B K, YU G. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.
doi: 10.1126/science.290.5499.2105
[9] SOUER E, VANHOUWELINGEN A, KLOOS D, MOL J, KOES R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
doi: 10.1016/S0092-8674(00)81093-4
[10] AIDA M, ISHIDA T, FUKAKI H, FUJISAWA H, TASAKA M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9(6): 841-857.
doi: 10.1105/tpc.9.6.841
[11] OOKA H, SATOH K, DOI K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P, HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247.
doi: 10.1093/dnares/10.6.239
[12] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79-87.
doi: 10.1016/j.tplants.2004.12.010
[13] MUROZUKA E, MASSANGE-SANCHEZ J A, NIELSEN K, GREGERSEN P L, BRAUMANN I. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS ONE, 2018, 13(12): e0209769.
doi: 10.1371/journal.pone.0209769
[14] TIAN F, YANG D C, MENG Y Q, JIN J, GAO G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Research, 2020, 48(D1): D1104-D1113.
[15] GUERIN C, ROCHE J, ALLARD V, RAVEL C, MOUZEYAR S, BOUZIDI M F. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS ONE, 2019, 14(3): e0213390.
doi: 10.1371/journal.pone.0213390
[16] ZHAO D, DERKX A P, LIU D C, BUCHNER P, HAWKESFORD M J. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology (Stuttgart), 2015, 17(4): 904-913.
doi: 10.1111/plb.2015.17.issue-4
[17] HARRINGTON S A, OVEREND L E, COBO N, BORRILL P, UAUY C. Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biology, 2019, 19(1): 407.
doi: 10.1186/s12870-019-2022-5
[18] XUE G P, BOWER N I, MCINTYRE C L, RIDING G A, KAZAN K, SHORTER R. TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 2006, 33(1): 43-57.
doi: 10.1071/FP05161
[19] ZHANG L, ZHANG L, XIA C, ZHAO G, JIA J, KONG X. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Science, 2015, 6: 1174.
[20] PEROCHON A, KAHLA A, VRANIC M, JIA J, MALLA K B, CRAZE M, WALLINGTON E, DOOHAN F M. A wheat NAC interacts with an orphan protein and enhances resistance to Fusarium head blight disease. Plant Biotechnology Journal, 2019, 17(10): 1892-1904.
doi: 10.1111/pbi.v17.10
[21] WANG B, WEI J, SONG N, WANG N, ZHAO J, KANG Z. A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust. Journal of Integrative Plant Biology, 2018, 60(5): 432-443.
doi: 10.1111/jipb.v60.5
[22] PURANIK S, SAHU P P, SRIVASTAVA P S, PRASAD M. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 2012, 17(6): 369-381.
doi: 10.1016/j.tplants.2012.02.004
[23] AMERES S L, ZAMORE P D. Diversifying microRNA sequence and function. Nature Reviews. Molecular Cell Biology, 2013, 14(8): 475-488.
doi: 10.1038/nrm3611
[24] ZHANG H, MAO R, WANG Y, ZHANG L, WANG C, LV S, LIU X, WANG Y, JI W. Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Science, 2019, 288: 110160.
doi: 10.1016/j.plantsci.2019.05.023
[25] ZHANG X M, ZHANG Q, PEI C L, LI X, HUANG X L, CHANG C Y, WANG X J, HUANG L L, KANG Z S. TaNAC2 is a negative regulator in the wheat-stripe rust fungus interaction at the early stage. Physiological and Molecular Plant Pathology, 2018, 102: 144-153.
doi: 10.1016/j.pmpp.2018.02.002
[26] WANG H-L, ZHANG Y, WANG T, YANG Q, YANG Y, LI Z, LI B, WEN X, LI W, YIN W, XIA X, GUO H, LI Z. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. The Plant Cell, 2021, 33: 1594-1614.
doi: 10.1093/plcell/koab046
[27] REDDY A S, MARQUEZ Y, KALYNA M, BARTA A. Complexity of the alternative splicing landscape in plants. The Plant Cell, 2013, 25(10): 3657-3683.
doi: 10.1105/tpc.113.117523
[28] XUE F, JI W, WANG C, ZHANG H, YANG B. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2012, 124(8): 1549-1560.
doi: 10.1007/s00122-012-1809-7
[29] ZHANG H, YANG Y, WANG C, LIU M, LI H, FU Y, WANG Y, NIE Y, LIU X, JI W. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 2014, 15(1): 898.
doi: 10.1186/1471-2164-15-898
[30] ZHANG H, MAO R, WANG Y, ZHANG L, WANG C, LV S, LIU X, WANG Y, JI W. Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Science, 2019, 288: 110160.
doi: 10.1016/j.plantsci.2019.05.023
[31] SANCHEZ-MARTIN J, WIDRIG V, HERREN G, WICKER T, ZBINDEN H, GRONNIER J, SPORRI L, PRAZ C R, HEUBERGER M, KOLODZIEJ M C, ISAKSSON J, STEUERNAGEL B, KARAFIATOVA M, DOLEZEL J, ZIPFEL C, KELLER B. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nature Plants, 2021, 7(3): 327-341.
doi: 10.1038/s41477-021-00869-2
[32] GAO P, QUILICHINI T D, ZHAI C, QIN L, NILSEN K T, LI Q, SHARPE A G, KOCHIAN L V, ZOU J, REDDY A S N, WEI Y, POZNIAK C, PATTERSON N, GILLMOR C S, DATLA R, XIANG D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19: 1624-1643.
doi: 10.1111/pbi.v19.8
[33] KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. miRBase: From microRNA sequences to function. Nucleic Acids Research, 2019, 47(D1): D155-D162.
doi: 10.1093/nar/gky1141
[34] FANG Y, XIE K, XIONG L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
doi: 10.1093/jxb/eru072
[35] KIM J H, WOO H R, KIM J, LIM P O, LEE I C, CHOI S H, HWANG D, NAM H G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009, 323(5917): 1053-1057.
doi: 10.1126/science.1166386
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!