Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (10): 1930-1940.doi: 10.3864/j.issn.0578-1752.2017.10.018

• RESEARCH NOTES • Previous Articles    

Cloning and Expression Analysis of Carotenoid Cleavage Dioxygenase 1 (CCD1) Gene in Tagetes erecta L.
 

LIU XiaoCong1, ZENG Li1,2, LIU GuoFeng, PENG YongZheng1, TAO YiWei1, ZHANG YaoYue1, WANG MengRu1   

  1. 1School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240; 2Key Laboratory of Urban Agriculture   (South) Ministry of Agriculture, Shanghai 200240; 3College of Horticulture and Forestry Science, Huazhong Agricultural University/Key Laboratory of horticultural plant biology of Ministry of Education, Wuhan 430070
  • Received:2016-10-19 Online:2017-05-16 Published:2017-05-16

Abstract: 【Objective】Carotenoid Cleavage Dioxygenase 1 gene of Tagetes erecta L. ‘Scarletade’(TeCCD1) was cloned for bioinformatics and gene expression analysis, which can help clarifying its biological functions in carotenoid degradation pathway and providing a theoretical foundation to further clarify the mechanism of African marigold flower color formation.【Method】According to the transcriptome of African marigold flower bud, the full-length cDNA of TeCCD1 had been obtained, and gene expression profile of ray florets at developmental stages of closed bud, semi-open bud, open flower and fully open flower was studied by Real-time PCR.【Result】The full-length sequence of CCD1 cDNA obtained from African marigold is 1 746 bp (GenBank accession number: KX557488), with a coding region length of 1 626 bp, putatively encoding 541 amino acids. Protein analysis indicated that TeCCD1 is an unstable protein and has no signal peptide, which belongs to the RPE65 superfamily (GenBank accession number is PF03055) having the same conserved domain of CCD family, and it is mainly located in the cytoplasm. CCD1 nucleic acid sequence of African marigold is 89% homologous to that of Pyrethrum. Amino acid sequence analysis suggested that CCD1 of African marigold is 93% homologous to that of Pyrethrum, and 75%-83% homologous to that of 19 different species, indicating that TeCCD1 is highly conserved gene. Phylogenetic analysis showed that the evolution of TeCCD1 is basically in accordance with the evolution law of plant taxonomy and has obvious characteristics of species, which has a closest relationship with that of the species in Compositae. The results of Real-time PCR demonstrated that expression of TeCCD1 increased along with the development of ray floretsand reached the maximum value at S4 stage.【Conclusion】CCD1 homolog was cloned in Tagetes erecta L. ‘Scarletade’ identified to be a typical member of the CCD family, which is a highly conserved gene located in the cytoplasm. The color fading of ray florets during the late development phase is possibly caused by the increase of expression of TeCCD1, which contributes to a decrease in carotenoid content.

Key words: Tagetes erecta L., carotenoid cleavage dioxygenase 1 (CCD1), flower color, gene expression

[1]    Deineka V I, Sorokopudov V N, Deineka L A,Yu M T. Flowers of marigold (Tagetes) species as a source of xanthophylls. Pharmaceutical Chemistry Journal, 2007, 41(10): 540-542.
[2]    Tsao R, WANG M C, DENG Z y. Lutein: separation, antioxidant activity, and potential health benefits. Acs Symposium, 2007, 956: 352-372.
[3]    Stringham J M, Bovier E R, Wong J C, Hammond B R. The influence of dietary lutein and zeaxanthin on visual performance. Journal of Food Science, 2010, 75(1): R24-R29.
[4]   Berman J, Zorrilla-López U, FarréG, C Zhu C F, Sandmann G, twyman r m, capell t, christou p. Nutritionally important carotenoids as consumer products. Phytochemistry Reviews, 2015, 14(5): 727-743.
[5]    Porter J W, Lincoln R E. Lycopersicon selections containing a high content of carotenes and colourless polyenes. II. The mechanism of carotene biosynthesis. Archives of Biochemistry and Biophysics 1950, 27: 390-395.
 [6]   Tan B C, Schwartz S H, Zeevaart J A, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences USA, 1997, 94(22): 12235-12240.
[7]    yuan h, zhang j X, nageswaran d, li l. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2015, 2: 15036.
[8]    Tan B C, Joseph L M , Deng W T, Liu L J, Li Q B, Kenneth C, McCarty D R. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. The Plant Journal, 2003, 35(1): 44-56.
[9]    杨永霞, 牛志强, 张松涛, 崔红, 刘国顺. 烟草类胡萝卜素降解关键基因CCD1的克隆与表达分析. 中国烟草学报, 2014, 20(1): 84-89.
YANG Y X, NIU Z Q, ZHANG S T, CUI H, LIU G H. Cloning and expression of gene CCD1 critical to cleavage of tobacco carotenoid. Acta Tabacaria Sinica, 2014, 20(1): 84-89. (in Chinese)
[10]   梁乘榜. 枇杷果实品质分析及CCD1基因克隆与表达研究[D]. 扬州: 扬州大学, 2013.
Liang C B. Quality analysis and CCD1 gene cloning and expression of loquat (Eriobotrya japonica) fruit [D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[11]   Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology, 2006, 142(3): 1193-1201.
[12]   王晓庆, 张超, 王彦杰, 董丽. 牡丹NCED基因的克隆和表达分析. 园艺学报, 2012, 39(10): 2033-2044.
WANG X Q, ZHANG C, WANG Y J, DONG L. Isolation and expression of 9-cis epoxycarotenoid dioxygenase gene in tree peony. Acta Horticulturae Sinica, 2012, 39(10): 2033-2044. (in Chinese)
[13]   周莉. 不同变种甜瓜果实香气, 颜色及相关的CmCCD1基因表达的研究[D]. 天津: 天津大学, 2013.
Zhou L. Analysis of aroma components, color and related CmCCD1 expression in different varities of melon (Cucumis melo L.) fruit [D]. Tianjin: Tianjin University, 2013. (in Chinese)
[14]   徐庆华, 胡宝忠, 李凤兰, 金峰, 王多佳. 黄瓜CsCCD7基因的克隆及表达研究. 热带亚热带植物学报, 2011, 19(4): 365-373.
XU Q H, HU B Z, LI F L , JIN F, WANG D J. Cloning of CsCCD7 and its expression in Cucumis sativus L. Journal of Tropical and Subtropical Botany,2011, 19(4): 365-373. (in Chinese)
[15]   曾文芳. 甜橙八氢番茄红素合成酶基因及其启动子的克隆与功能分析[D]. 武汉: 华中农业大学, 2012.
Zeng W F. Identification and functional characterization of promoters and gens of phytoene synthase from sweet orange [D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[16]   Rubio-moraga A, Rambla J L, Fernández-de-carmen A, Traperomozos A, Ahrazem O, Orzaez D, Granell A, Gomez-Gomez L. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 2014, 86: 555-569.
[17]   adami m, franceschi p D, brandi f, liverani a,  giovannini d, rosati c, dondini l, tartarini s. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Molecular Biology Reporter, 2013, 31(5): 1166-1175.
[18]   温可睿. 葡萄类胡萝卜素裂解双加氧酶基因克隆及功能鉴定[D]. 哈尔滨: 东北林业大学, 2012.
Wen K R. Clone and function identification of carotenoid cleavage dioxygenase from Vitis vinifera [D]. Haerbin: Northeast Forestry University, 2012. (in Chinese)
[19]   Han y j, wang x h, chen w c, dong m f, yuan w j, liu x, shang f d. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genetics & Genomes, 2014, 10(2): 329-338.
[20]   Ureshino K J, Nakayama M, Miyajima I. Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in azalea petals. Euphytica,2016, 207: 401-417.
[21]   HAI N T L, MASUDA J I, MIYAJIMA I, Nguyen T Q, Mojtahedi N, Hiramatsu M, Kim J H, Okubo H,. Involvement of carotenoid cleavage dioxygenase 4 gene in Tepal color change in Lilium brownii var. Colchesteri. Japanse of Society for Horticultural Science, 2012, 81(4): 366-373.
[22]   AULDRIDGE M E, MCCARTY D R, KLEE H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 2006, 9(3): 315-321.
[23]   AULDRIDGE M E, Block A, Vogel J T, DabneySmith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty D R, Klee H J. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. The Plant Journal, 2006(45): 982-993.
[24]   Simkin A J, Underwood B A, Auldridge M, Loucas H M, Shibuya K, Schmelz E, Clark D G, Klee H J. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-Ionone a fragrance volatile of petunia flowers. Plant Physiology, 2004, 136(3): 3504-3514.
[25]   TIAN X w, Ji J, WANG G, JIN C, GUAN C F, WU G X. Molecular cloning and characterization of a novel carotenoid cleavage dioxygenase 1 from Lycium chinense. Biotechnology and Applied Biochemistry, 2015, 62(6): 772-779.
[26]   Del Villar-Martínez A A, Garcíasaucedo P A, Carabeztrejo A, Cruzhernández A, ParedeslOpeza O. Carotenogenic gene expression and ultrastructural changes during development in marigold. Journal of Plant Physiology, 2005, 162(9): 1046-1056.
[27]   Moehs C P, Tian L, Osteryoung K W, Dellapenna D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 2001, 45(3): 281-293.
[28]   王国兰, 程曦, 任君安, 乔伟, 罗昌, 吴忠义, 黄丛林, 康宗利, 张秀海. 色素万寿菊中叶黄素合成相关基因的表达分析. 分子植物育种, 2012, 10(1): 67-72.
Wang G L, Cheng X, Ren J A, Qiao W, Luo C, Wu Z Y, Huang C L, Kang Z L, Zhang X H. Expression analysis of lutein biosynthetic genes in pigment marigold. Molecular Plant Breeding, 2012, 10(1): 67-72. (in Chinese)
[29]   林登贵. 万寿菊花色差异形成机理分析[D]. 上海: 上海交通大学, 2014.
Lin D G.Dissecting the mechanism of marigold flowers color formation [D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
[30]   张嫔. 万寿菊属植物染色体核型分析及万寿菊Psy基因遗传转化体系影响因素的研究[D]. 上海: 上海交通大学, 2012.
Zhang P. The study of karyotype on genus Tagetes L. and factors in the genetic transformation system of Psy gene for Tagetes erecta L. [D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
[31]   Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
[32]   彭公信. 基因进化保守性和变异性比较分析[D]. 石家庄: 河北科技大学, 2012.
Peng G X. Genetic evolution conservative variability and comparative analysis [D]. Shijiazhuang: Hebei University of Science & Technology, 2012. (in Chinese)
[33]   赵军林, 于喜艳, 王秀峰. 橙色果肉甜瓜β-胡萝卜素积累的分子机理. 山东农业科学, 2014, 46(5): 7-11, 30.
Zhao J L, Yu X Y, Wang X F. Molecular mechanism of β-carotene accumulation in orange-fleshed Muskmelon. Shangdong Agricultural Sciences, 2014, 46(5): 7-11, 30. (in Chinese)
[34]   高军平. 烟草类胡萝卜素加氧酶基因的克隆与功能研究[D]. 重庆: 重庆大学, 2013.
Gao J P. Clonging and functional analysis of carotenoid cleavage dioxygenase gene in Nicotiana tabacum [D]. Chongqing: Chongqing University, 2013. (in Chinese)
[35]   韦艳萍, 刘云飞, 许桂梅, 万红建, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 杨悦俭. 菊分支 NCED 酶分子特征及进化分析. 核农学报, 2015, 29(2): 278-289.
Wei Y P, Liu Y F, Xu G M, Wan H J, Li Z M, Ye Q J, Wang R Q, Ruan M Y, Yao Z P, Zhou G Z, Yang Y J. Molecular characteristics and phylogenetic analysis of NCED enzyme in Chrysanthemum. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 278-289. (in Chinese)
[36]   安田齐, 傅玉兰, 译. 花色的生理生物化学. 北京: 中国林业出版社, 1989: 310-318.
An T Q, Fu Y L. Physiology and Biochemistry of Flower Color. Beijing: China Forestry Publishing House, 1989: 310-318. (in Chinese)
[37]   Simkin A J, Schwartz S H, Auldridge M, Taylor M G, Klee H J. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone and gerany lacetone. Plant Journal, 2004, 40: 882-892.
[38]   Floss D S, Schliemann W, Schmidt J, Strack D, Walter M H. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiology, 2008, 148(3): 1267-1282.
[39]   IBDAH M, AZULAY Y, PORTNOY V, WASSERMAN B, BAR E, Meir A, Burger Y, Hirschberg J, Schaffer A A, Katzir N, Tadmor Y, Lewinsohn E. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry, 2006, 67: 1579-1589.
[40]   LEE W L, HUANG J Z, CHEN L C, TSAI C C, CHEN F C. Developmental and LED light source modulation of carotenogenic gene expression in oncidium gower ramsey flowers. Plant Molecular Biology Reporter, 2013, 31(6): 1433-1445.
[41]   Alferez F, Pozo L V, Rouseff R R, Burns J K. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in ‘Valencia’ sweet orange. Journal of Agricultural and Food Chemistry, 2013, 61(12): 3082-3089.
[42]   bU J W, NI Z D, AISIKAER G, JIANG Z H, KHAN Z U, MOU W S, YING T J. Postharvest ultraviolet-c irradiation suppressed Psy1 and Lcy-beta expression and altered color phenotype in tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 2014, 89: 1-6.
[43]   Karlova R, Rosin F M , Busscher-Lange J, Parapunova V , Do P T, Fernie A R, Fraser P D, Baxter C, Angenent G,de Maagd R A . Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 2011, 23(3): 923-941.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[6] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[7] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[8] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[9] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[10] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[11] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[12] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[15] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!