Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (5): 811-821.doi: 10.3864/j.issn.0578-1752.2017.05.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles     Next Articles

Effects of 24-Brassinolide on the Fertility, Physiological Characteristics and Cell Ultra-Structure of Soybean Under Saline-Alkali Stress

WU Yang1, GAO HuiChun1, ZHANG BiXian3, ZHANG HaiLing2, WANG QuanWei1, LIU XinLei3, LUAN XiaoYan3, MA YanSong3   

  1. 1 College of Life Science and Technology, Harbin Normal University/Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025; 2 150086; 3Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086Institute of Grass Research, Heilongjiang Academy of Agriculture Sciences, Harbin
  • Received:2016-08-01 Online:2017-03-01 Published:2017-03-01

Abstract: Objective】The aim of this experiment was to study the effects of exogenous EBR (24-epibrassinolide) on the growth indices, physiological characteristics and cellular ultrastructure of soybean under saline-alkali stress. 【Method】Soybean variety Heinong 44 was employed as the test material, and cultivated in 110 mmol·L-1 nutrient solution saline-alkali stress treatments for 3 d and 7 d to investigate the effects of 1.2 mg·L-1 exogenous EBR on the height and root growth, SOD, POD, and APX three kinds of antioxidant enzyme activities, relative electrical conductivity, superoxide anion (O2-) production rate, contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), free proline concentration content, chlorophyll content of soybean leaves and the responses of cellular ultrastructure of soybean leaves and root tips under saline-alkali stress. 【Result】Under the condition of saline-alkali stress dealing with 3 d and 7 d, compared to the control, the three kinds of antioxidant enzyme activities of SOD, POD, and APX, free proline content, relative electrical conductivity, O2-production rate, contents of H2O2 and MDA all increased, the growth indices and chlorophyll content all decreased; the chloroplast and mitochondria cellular ultrastructure of soybean leaves suffered severe damages. The mitochondria and endoplasmic reticulum cellular ultrastructure of soybean root tips suffered severe damages, and vacuole was ruptured. Application of EBR under saline-alkali stress increased soybean plant height, root length, fresh mass of root by 6.45%, 9.60% and 19.85%, respectively. Application of EBR the activities of SOD, POD, and APX of soybean leaves in 3 d and 7 d treatments increased by 16.92% and 9.68%, 48.85% and 61.44%, 19.05% and 20.36%, respectively, relative electrical conductivity, O2-production rate, H2O2 and MDA contents significantly decreased by 19.58% and 28.26%, 28.06% and 40.92%, 28.62% and 31.21%, 31.03% and 37.17%, respectively, free proline content and chlorophyll content significantly increased by 3.67% and 15.96%, 13.34% and 16.87%, respectively. At the same time, the stability of soybean leaves and root tip cell ultrastructure were maintained and the aging of cells and disintegration were delayed.【Conclusion】The results suggested that application of exogenous EBR under saline-alkali stress could increase the antioxidant enzyme activities, free proline concentration and chlorophyll content, reduce the accumulation of reactive oxygen species(ROS), maintain the cell structure integrity, promote seedling growth and resulting in improving the tolerance of soybean seedlings to saline-alkali stress.

Key words: soybean, saline-alkali stress, 24-epibrassinolide, fertility, physiological characteristics, cell ultra-structure

[1]    李文誉, 李德明. 盐碱及重金属对植物生长发育的影响. 北方园艺, 2010(8): 221-224.
Li W Y, Li D M. Effects of salinization and heavy metals stress on plant growth and development. Northern Horticulture, 2010(8): 221-224. (in Chinese)
[2]    Gianpiero M, Roberta P, Alessandra T, Lorenzo R, Stanley L, Marialuisa C, Marcello G, Mario F, Paolo B, Emidio A. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). Plos One, 2013, 8(9): e75597.
[3]    张红. 硝普钠、24 -表油菜素内酯/水杨酸浸种对盐胁迫下玉米种子萌发及幼苗生长的影响. 核农学报, 2012, 26(1): 164-169.
Zhang H. Effects of priming with sodium nitroprusside and 24- epibrassinolide or salylic acid on seed germination and growth of maize under salt stress. Journal of Nuclear Agricultural Sciences, 2012, 26(1): 164-169. (in Chinese)
[4]    Choudhary S P, Yu J Q, Yamaguchi-Shinozaki K, Shinozaki K, Lam-Son P T. Benefits of brassinosteroid crosstalk. Trends in Plant Science, 2012, 17: 594-605.
[5]    阮英慧, 董守坤, 刘丽君, 孙聪姝, 郭茜茜, 王利彬, 盖志佳. 干旱胁迫下油菜素内酯对大豆花期生理特性的影响. 作物杂志, 2011(6): 33-37.
Ruan Y H, Dong S K, Liu L J, Sun C S, Guo Q Q, Wang L B, Gai Z J. Effects of brassinosteroid on physiological characteristics at flowering stage of soybean under drought stress. Crops, 2011(6): 33-37. (in Chinese)
[6]    耶兴元, 仝胜利, 张燕. 油菜素内酯对高温胁迫下猕猴桃苗耐热性相关生理指标的影响. 西北农业学报, 2011, 20(9): 113-116.
Ye X Y, Tong S L, Zhang Y. Effects of brassinolide on physiological indicators related to thermo-tolerance of kiwifruit seedlings under high temperature stress. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(9): 113-116. (in Chinese)
[7]    惠竹梅, 王智真, 胡勇, 邓敏敏, 张振文. 24 -表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响. 中国农业科学, 2013, 46(5): 1005-1013.
HUI Z M, Wang Z Z, Hu Y, Deng M M, Zhang Z W. Effects of 24-epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V. vinifera L.) under chilling stress. Scientia Agricultura Sinica, 2013, 46(5): 1005-1013. (in Chinese)
[8]    赵宇, 梁志英, 杨艳君. 油菜素内酯对龙葵幼苗Cd毒害耐受性的影响. 中国生态农业学报, 2013, 21(7): 872-876.
Zhao Y, Liang Z Y, Yang Y J. Effects of exogenous brassinosteroid on Cd tolerance in Solanum nigrum seedlings. Chinese Journal of Eco-Agriculture, 2013, 21(7): 872-876. (in Chinese)
[9]    Nakashita H, Yasuda M, Nitta T, Asami1 T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal8., 2003, 33(5): 887-89
[10]   束红梅, 郭书巧, 沈新莲, 倪万潮. 油菜素内酯对NaCl胁迫下棉花幼苗生理特性的影响. 江苏农业学报, 2011, 27(6): 1198-1202.
Shu H M, Guo S Q, Shen X L, Ni W C. Cotton physiology affected by brassinosteroid under NaCl stress. Jiangsu Journal of Agricultural Sciences, 2011, 27(6): 1198-1202. (in Chinese)
[11]   陆晓民, 孙锦, 郭世荣, 何立中. 油菜素内酯对低氧胁迫黄瓜幼苗根系线粒体抗氧化系统及其细胞超微结构的影响. 园艺学报, 2012, 39(5): 888-896.
Lu X M, Sun J, Guo S R, He L Z, Effects of brassinolide on the mitochondria antioxidant system and cellular ultrastructure of cucumber seedling roots under hypoxic stress. Acta Horticulturae Sinica, 2012, 39(5): 888-896. (in Chinese)
[12]   赵世杰, 刘华山, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 1998: 149-161.
Zhao S J, Liu H S, Dong X C. Experimental instruct of plant physiology. Beijing: Chinese Agricultural Science and Technology Press, 1998: 149-161. (in Chinese)
[13]   Feng G, Zhang F S, Li X L. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12: 185-190.
[14]   Shahbaz M, Ashraf M, Athar H R. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.). Plant Growth Regulation, 2008, 55: 51-64.
[15]   Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. The Plant Journal, 2000, 24: 693-701.
[16]   Ashraf M, Akram N A, Arteca R N, Foolad M R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 2010, 29: 162-190.
[17]   Zurek D M, Rayle D L, McMorris T C, Clouse S D. Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid regulated stem elongation. Plant Physiology, 1994, 104: 503-513.
[18]   Vert G, Nemhauser J L, Geldner N, Hong F, Chory J. Molecular mechanisms of steroid hormone signaling in plants. Annual Review of Cell and Developmental Biology, 2005, 21: 177-201.
[19]   Talaat N B, Shawky B T. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiology Plant, 2013, 35: 729-740.
[20]   Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, Van B F. ROS signaling: the new wave? Trends in Plant Science, 2011, 16(6): 300-309.
[21]   Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress. Annals of Botany, 2003, 91: 179-194.
[22]   Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the USA, 2002, 99: 4097-4102.
[23]   Saygideger S, Deniz F. Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regulation, 2008, 56: 219-223.
[24]   Fariduddin Q, Yusuf M, Chalkoo S, HAYAT S, AHMAD A. 28-homo-brassinolode improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 2011, 49: 55-64.
[25]   Almeida J M, Fidalgo F, Confraria A, SANTOS A, PIRES H, SANTOS I. Effect of hydrogen peroxide on catalase gene expression ,isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastrucyural changes in mesophyllcells. Functional Plant Biology, 2005, 32: 707-720.
[26]   康云艳, 郭世荣, 李娟, 段九菊. 24-表油菜素内酯对低氧胁迫下黄瓜幼苗根系抗氧化系统的影响. 中国农业科学, 2008, 41(1): 153-161.
Kang Y Y, Guo S R, Li J, Duan J J. Effects of 24-epibrassinolide on antioxidant system in cucumber seedlings roots under hypoxia stress. Scientia Agricultura Sinica, 2008, 41(1): 153-161. (in Chinese)
[27]   Zhang M, Zhai Z, Tian X, Duan L, Li Z. Brassinolide alleviated the adverse effect of water deficits on photo-synthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 2008, 56: 257-264.
[28]   Xia X J, Huang L F, Zhou Y H, Mao W H, Shi K, Wu J X, Asami T, Chen Z, Yu J Q. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 2009, 230: 1185-1196.
[29]   Ding J, Shi K, Zhou Y H, Yu J Q. Effects of root and foliar applications of 24-epibrassinolide on fusarium wilt and antioxidant metabolism in cucumber roots. Hort Science, 2009, 44: 1340-1345.
[30]   Ashraf M, Foolad M R. Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59: 206-216.
[31]   王娟, 李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢. 植物学通报, 2001, 18(4): 459-465.
Wang J, Li D Q, The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chinese Bulletin of Botany, 2001, 18(4): 459-465. (in Chinese)
[32] Jain M, Mathur G, Koul S, Sarin N B. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Report, 2001, 20: 463-468.
[33]   Samaras Y, Bressan R A, Csonka L N, Garcia R M G, Durzo M P, Rhodes D. Proline accumulation during drought and salinity//Smirnoff N (ed). Environment and plant metabolism. Bios

Scientific Press, Oxford, 1995: 161-187.
[34]   Hayat S, Hasan S A, Yusuf M, Hayat Q, Ahmad A. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 2010, 69: 105-112.
[35]   Fariduddin Q, Yusuf M, Ahmad I, Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum,2014, 58(1): 9-17.
[36]   Xu X M, Ye H C, Li G F. Progress in research of plant tolerance to saline stress. Chinese Journal of Applied Environmental Biology, 2000, 6: 379-387.
[37]   李涛涛, 高永峰, 马瑄, 陈永富, 王阳, 马金彪. 外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响. 基因组学与应用生物学, 2016, 35(1): 218-226.
Li T T, Gao Y F, Ma X, Chen Y F, Wang Y, Ma J B. Effects of exogenous brassinosteroid on photosynthesis of three spesies of populus under drought, salt and copper stress. Genomics and Applied Biology, 2016, 35(1): 218-226. (in Chinese)
[38]   Zhang M C, Zhai Z X, Tian X L, and Duan L S, L Z H. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 2008, 56(3): 257-264.
[39]   Shao H B, Chu L Y, Jaleel C A, Zhao C X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 2008, 331(3): 215-225.
[40]   Geissler N, Hussin S, Koyro H W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L.. Environmental and Experimental Botany, 2009, 65: 220-231.
[41]   贾恢先, 赵曼容. 盐性细胞原生质体的超微结构和生理特性. 甘肃农业大学学报, 1990, 25(1): 36-42.
JIA H X, ZHAO M R. The ultrastructure and physiological characteristics of protoplast of saline cell. Journal of Gansu Agricultural University, 1990, 25(1): 36-42. (in Chinese)
[42]   郑文菊, 王勋陵, 沈禹颖. 几种盐地生植物同化器官的超微结构研究. 电子显微学报, 1999, 5(18): 507-512.
Zheng W J, Wang X L, Shen Y Y. A study on the ultrastructure of assimilative organs of some plants in saline habitate. Journal of Chinese Electron Microscopy Society, 1999, 5(18): 507-512. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[7] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[10] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[11] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[12] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[13] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[14] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[15] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!