Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (4): 669-678.doi: 10.3864/j.issn.0578-1752.2017.04.007

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Homeobox Transcription Factor Family in Genome-Wide and Expression Pattern Analysis of the Members in Setosphaeria turcica

ZHAO Jie1, ZHAO LiQing1, GONG XiaoDong1, FENG ShengZe1, LIU XingChen1, ZHENG YaNan1, LI ZhiYong2, SUN HaiYue1, WANG DongXue1, HAN JianMin1, GU ShouQin1, DONG JinGao1   

  1. 1Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding 071001, Hebei; 2Millet Research Institute, Hebei Academy of agriculture and Forestry, Shijiazhuang 050000
  • Received:2016-10-24 Online:2017-02-16 Published:2017-02-16

Abstract: 【Objective】 The objectives of this study are to identify Homeobox transcription factor family from Setosphaeria turcica genome, and to predict the locations of their corresponding coding proteins in the cells, gene structure and evolutionary characteristics, as well as to explore their expression patterns at different growth and development stages in S. turcica. 【Method】Homeobox transcription factor family was identified based on S. turcica genome database and bioinformatics methods. Phylogenetic tree were created using the MEGA5.0 program. Gene structure characteristics were analyzed by GSDS software, which was a gene structure display server online (http://gsds1.cbi.pku.edu.cn/index.php). Amino acid sequence characteristics of the genes in Homeobox transcription factor family were compared using software Clustal X 1.83. The secondary structures of homeodomain proteins were predicted by employing software SOMPA. Three-dimensional structures of Homeobox transcription factor family were doped out using Software I-TASSER. Homeobox genes expression patterns were detected at different developmental stages based on quantitative real-time PCR (qRT-PCR) analysis. 【Result】 A total of 8 Homeobox genes were systematically identified from S. turcica genome and classified into 4 groups according to the gene structure and phylogenetic tree. Subcellular localization showed that all of the predicted proteins located in the cell nuclei. The family members contained conserved Homeobox domains and typical “helix-turn-helix” secondary structures. Different gene family members took on different expression levels at different development stages in S. turcica. The expression level of StHTF1 was significantly higher at mycelium, spore and appressorium formation stages than other stages. StHTF3, StHTF4 had the highest expression level at spore formation stage than other stages in S. turcica, while StHTF6 was the highest at germ tube formation stage. Moreover, StHTF2, StHTF5, StHTF7 and StHTF8 appeared higher expression level at appressorium formation stage than other genes. 【Conclusion】 Homeobox transcription factor family in S. turcica contains 8 genes which are classed into 4 categories and located in the nuclei. The proteins encoded by the genes contain conserved Homeobox domain and “helix-turn-helix” spatial structure. Homeobox gene family members in S. turcica appeared diverse expression profiles which will lay the foundation for identifying the functions of the gene family.

Key words: Setosphaeria turcica, Homeobox transcription factor family, system evolution, gene expression

[1]    Ai L P, Shen A, Gao Z C, Li Z L, Sun Q L, Li Y Y, Luan W J. Reverse genetic analysis of transcription factor OsHox9, a member of homeobox family in rice. Rice Science, 2014, 21(6): 312-317.
[2]    Lappin T R, Grier D G, Thompson A, Halliday H L. HOX genes: seductive science, mysterious mechanisms. The Ulster Medical Journal, 2006, 75(1): 23-31.
[3]    Bhattacharjee A, Ghangal R, Garg R, Jain M. Genome- wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling. Plos One, 2015, 10(3): e0119198.
[4]    郑文辉, 赵旭, 张承康, 鲁国东, 王宗华, 王爱荣. 禾谷镰刀菌Homeobox基因结构及其演化关系分析. 热带作物学报, 2009, 30(2): 205-210.
Zheng W H, Zhao X, Zhang C K, Lu G D, Wang Z H, Wang A R. Gene structure and phylogenetic relationships of Homeobox transcriptional factors in Fusarium graminearum. Chinese Journal of Tropical Crops, 2009, 30(2): 205-210. (in Chinese)
[5]   Jain M, Tyagi A K, Khurana J P. Genome-wide identification, classification, evolutionary expansion and expression analyses      of homeobox genes in rice. The FEBS Journal, 2008, 275(11): 2845-2861.
[6]    Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Molecular Biology and Evolution, 2009, 26(12): 2775-2794.
[7]    Holland P W, Booth H A, Bruford E A. Classification and nomenclature of all human homeobox genes. BMC Biology, 2007, 5(1): 47.
[8]    Takatori N, Butts T, Candiani S, Pestarino M, Ferrier D E, Saiga H, Holland P W. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Development Genes and Evolution, 2008, 218(11/12): 579-590.
[9]    Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden L L. Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes & Development, 2002, 16(23): 3034-3045.
[10]   Kunoh T, Kaneko Y, Harashima S. YHP1 encodes a new homeoprotein that binds to the IME1 promoter in Saccharomyces cerevisiae. Yeast, 2000, 16(5): 439-449.
[11]   Ostapenko D, Solomon M J. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2011, 22(13): 2175-2184.
[12]   Bakkeren G, Kämper J, Schirawski J. Sex in smut fungi: structure, function and evolution of mating-type complexes. Fungal Genetics and Biology, 2008, 45(Suppl.1): 15-21.
[13]   张红红, 郑文辉, 骆琼, 乔向威, 陈阿海, 余文英, 王宗华. 禾谷镰刀菌Homeobox转录因子FgHtf1敲除突变体基因差异表达分析. 中国科技论文, 2015, 10(12): 1392-1397.
Zhang H H, ZhenG W H, Luo Q, Qiao X W, Chen A H, Yu W Y, WANG Z H. Differential analysis of gene expression in the Homeobox transcription factor FgHtf1 deletion mutant of Fusarium graminearum. China science paper, 2015, 10(12): 1392-1397. (in Chinese)
[14]   Degefu Y, Lohtander K, Paulin L. Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie, 2004, 86(2): 83-90.
[15]   张鑫, 曹志艳, 刘士伟, 郭丽媛, 董金皋. 玉米大斑病菌聚酮体合成酶基因StPKS功能分析. 中国农业科学, 2011, 44(8): 1603-1609.
Zhang X, Cao Z Y, Liu S W, Guo L Y, Dong J G. Functional analysis of polyketide synthase gene StPKS in Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(8): 1603-1609. (in Chinese)
[16]   李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44(19): 3945-3954.
Li L, Xu H L, Yang X L, Li Y X, Hu Y K. Genome-wide identification, classification and expression analysis of LEA gene family in soybean. Scientia Agricultura Sinica, 2011, 44(19): 3945-3954. (in Chinese)
[17]   王勇, 姚勤, 陈克平. 动物bHLH转录因子家族成员及其功能. 遗传, 2010, 32(4): 307-330.
Wang Y, Yao Q, Chen K P. Progress of studies on family members and functions of animal bHLH transcription factors. Hereditas, 2010, 32(4): 307-330. (in Chinese)
[18]   王小龙, 李宏. 酵母螺旋酶(Y RF)基因家族的同源性分析. 内蒙古大学学报(自然科学版), 2003, 34(5): 530-535.
Wang X L, Li H. Homology analysis yeast helicase gene family. Acta Scientiarum Naturalium Univrsitatis NeiMongol, 2003, 34(5): 530-535. (in Chinese)
[19]   巩校东, 张晓玉, 田兰, 王星懿, 李坡, 张盼, 王玥, 范永山, 韩建民, 谷守芹, 董金皋. 玉米大斑病菌MAPK超家族的全基因组鉴定及途径模型建立. 中国农业科学, 2014, 47(9): 1715-1724.
Gong X D, Zhang X Y, Tian L, Wang X Y, Li P, Zhang P, Wang Y, Fan Y S, Han J M, Gu S Q, Dong J G. Genome-wide identification MAPK superfamily and establishment of the model of MAPK cascade pathway in Setosphaeria turcica. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724. (in Chinese)
[20]   吴迪, 赵梓彤, 李志勇, 杨峥, 檀迎会, 申珅, 曹志艳, 董金皋, 田菲菲, 郝志敏. 玉米大斑病菌钙/钙调素依赖性蛋白激酶(CaMK)基因家族的鉴定与表达模式分析. 农业生物技术学报, 2015, 23(8): 1020-1030.
Wu D, Zhao Z T, Li Z Y, Yang Z, Tan Y H, Shen S, Cao Z Y, Dong J G, Tian F F, HAO Z M. Identification and expression pattern analysis of calcium/calmodulin-dependent protein Kinases (CaMKs) gene family in Setosphaeria turcica. Journal of Agricultural Biotechnology, 2015, 23(8): 1020-1030. (in Chinese)
[21]   Gubenko I S. Drosophila genes that encode LIM-domain containing proteins: their organization, functions, and interactions. Tsitologiia I Genetika, 2006, 40(4): 44-67.
[22]   Jasinski S,  Kaur H,  Tattersall A,  Tsiantis M. Negative regulation of KNOX expression in tomato leaves. Planta, 2007, 226(5): 1255-1263.
[23]   Liu W D, Xie S Y, Zhao X H, Chen X, Zheng W H, Lu G D, Xu J R, Wang Z H. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Molecular Plant- Microbe Interactions, 2010, 23(4): 366-375.
[24]   Casselton L A, Olesnicky N S. Molecular genetics of mating recognition in basidiomycete fungi. Microbiology and molecular biology reviews, 1998, 62(1): 55-70.
[25]   Bürglin T R, Affolter M. Homeodomain proteins: an update. Chromosoma, 2016, 125(3): 497-521.
[26]   Gehring W J, Hiromi Y. Homeotic genes and the homeobox. Annual Review of Genetics, 1986, 20: 147-173.
[27]   Kim S, Park S Y, Kim K S, Rho H S, Chi M H, Choi J, Park J, Kong S, Park J, Goh J, Lee Y H. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. Plos Genetics, 2009, 5(12): e1000757.
[28]   Xiong D G, Wang Y L, Deng C L, Hu R W, Tian C M. Phylogenic analysis revealed an expanded C2H2-homeobox subfamily and expression profiles of C2H2 zinc finger gene family in Verticillium dahliae. Gene, 2015, 562(2): 169-179.
[29]   Arnaise S, Zickler D, Poisier C, Debuchy R. Pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserine. Molecular Microbiology, 2001, 39(1): 54-64.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[6] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[7] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[8] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[9] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[10] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[11] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[12] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[15] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!