Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (4): 657-668.doi: 10.3864/j.issn.0578-1752.2017.04.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Agricultural IOT Architecture and Application Model Research

ZHENG JiYe1,2, RUAN HuaiJun2, FENG WenJie2, XU ShiWei1   

  1. 1Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081; 2S&T Information Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2016-07-27 Online:2017-02-16 Published:2017-02-16

Abstract: Agricultural Internet of Things (AIoT) is the highly integrated information technology such as computer, internet and mobile communication’s application in agricultural field, and it is the essential condition for the agricultural informatization and intelligent. With the development of AIoT industry, there appears an endless stream of AIoT application systems, because of the lack of analysis for AIoT system’s whole architecture, the current AIoT application presents the fractional, vertical and heterogeneous characteristics. Extracting the system components and their relationship from various AIoT applications, and establishing AIoT system architecture, to achieve the AIoT’s design and realization method’s unification are urgent problems need to be solved. The paper analyzed the AIoT’s concepts, basic features and system structure research status, and found that the IoT development and management plans from different countries and institutes played good guidance for the related researchers, however, they didn’t give the specific methods that can design and realize the IoT systems, and furthermore agricultural environment’s diversity and complexity determine that AIoT architecture’s establishment must consider agricultural industries characteristics as a whole. Therefore, the paper firstly discussed the agricultural architecture building principles including extensibility, reusability, safety and reliability and so on, then combined with the specific needs of agricultural industry and experiences from engineering practices, put forward an AIoT hierarchical structure model, the model is divided into five layers from the bottom to the up, they are perception layer, access layer, network layer, data layer and application layer, respectively, and each layer corresponds to different communication protocols. And pointed out that AIOT hierarchical model and the corresponding protocol architecture constitute the AIoT architecture. Compared with the traditional three layers and four layers architecture, the proposed architecture added the access layer and data layer. Aiming at the problem that the majority objects in the ubiquitous environment have limited resources and computing power, the access layer emphasized that the underlying heterogeneous sensor networks can connect to the network layer seamlessly, it provides a unified abstract management interface to shield the complexity of the underlying heterogeneous sensor networks, and reduces the difficulty of building AIOT perception system. For the problem of agricultural data can not be fully used in current AIoT systems, and formed the information islands, the data layer designed and realized a service oriented architecture to solve the data exchange and sharing problems among different AIoT systems. Overall the five layers architecture’s functionalities are more independent, it is advantageous to the network load balancing between each layer, and reducing the burden of enterprise network communications. Aiming at the common problems of the application of agricultural industries, according to the different objects to be monitored, analyzed the agricultural production environment monitoring IoT, plant and animal life information monitoring IoT, agricultural products quality detection and the quality safety tracing IoT, agricultural machinery operation monitoring IoT’s present research situation and main technologies involved. From the perspective of agricultural application architecture, it was found that the current researches are more concentrated on the gateway hardware, and the embedded gateway middleware application is relatively few on the one hand, on the other hand the AIOT data sharing layer’s research is seriously lacking, each application system usually sent the perceive data directly to the AIOT application layer, therefore it is difficult to achieve the effect of further guiding to agricultural production for the lack of data mining and analysis. Finally, the paper discussed the further research and application direction of the AIoT technology.

Key words: agricultural internet of things, system structure, architecture model, application area, development direction

[1]    孙其博, 刘杰, 黎羴, 范春晓, 孙娟娟. 物联网: 概念、结构与关键技术研究综述. 北京邮电大学学报, 2010, 33(3): 1-9.
Sun Q B, Liu J, Li S, Fan C X, Sun J J. Internet of Things: summarize on concepts, architecture and key technology problem. Journal of Beijing University of Posts and Telecommunications, 2010, 33(3): 1-9. (in Chinese)
[2]    葛文杰, 赵春江. 农业物联网研究与应用现状及发展对策研究. 农业机械学报, 2014, 45(7): 222-230.
Ge W J, Zhao C J. State-of-the-art and developing strategies of agricultural internet of things. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 222-230. (in Chinese )
[3]    余欣荣. 关于发展农业物联网的几点认识. 中国科学院院刊, 2013, 28(6): 679-685.
Yu X R. Perspectives on developing agricultural internet of things in China. Bulletin of Chinese Academy of Sciences, 2013, 28(6): 679-685. (in Chinese)
[4]    李瑾, 郭美荣, 高亮亮. 农业物联网技术应用及创新发展策略. 农业工程学报, 2015, 31(增刊2): 200-209.
Li J, Guo M R, Gao L L. Application and innovation strategy of agricultural internet of things. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(Suppl.2): 200-209. (in Chinese)
[5]    李道亮. 农业物联网导论. 北京: 科学出版社, 2012.
Li D L. Introduction to Internet of Things in Agriculture. Beijing: Press of Science, 2012. (in Chinese)
[6]    Presser M, Barnaghi P M, Eurich M. The sensei project: integrating the physical world with the digital world of the network of the future. Ieee Communications Magazine, 2009, 47(4): 1-4.
[7]    Joachim W W. Initial architectural reference model for IoT. EU FD 7 Project, Deliverable Report: D1.2, 2011.
[8]    Sarma S, Brock D L, Ashton K. The networked physical world: Proposals for engineering the next generation of computing, commerce & automatic-identification//mit auto-id center, 2010: 76-77.
[9]    Koshizuka N, Sakamura K. Ubiquitous id: Standards for ubiquitous computing and the internet of things. Ieee Pervasive Computing, 2011, 9(4): 98-101.
[10]   ITU-T(Y.2221). Requirements for support of USN applications and services in NGN environment. 2010.
[11]   Pujolle G. An autonomic-oriented architecture for the internet of things//Proceedings of the Ieee John Vincent Atanasoff 2006 International Symposium on Modern Computing: Ieee Computer Society, 2006: 163-168.
[12]   Ning H S, Wang Z. Future internet of things architecture: Like mankind neural system or social organization framework? Ieee Communications Letters, 2011, 15(4): 461-463.
[13]   Duquennoy S, Grimaud G, Vandewalle J J. Smews: Smart and mobile embedded web server//2010 International Conference on Complex, Intelligent and Software Intensive Systems, 2009: 571-576.
[14]   纪阳, 成城, 唐宁. Web of things: 开放的物联网系统结构研究. 数字通信, 2012, 10(5): 14-19, 54.
Ji Y, Cheng C, Tang N. Web of things: Open real networking system schema. Digital Communication, 2012, 10(5): 14-19, 54. (in Chinese )
[15]   沈苏彬, 范曲立, 宗平, 毛燕琴, 黄维. 物联网的体系结构与相关技术研究. 南京邮电大学学报(自然科学版), 2009, 29(6): 1-11.
Shen S B, Fan Q L, Zong P, Mao Y Q, Huang W. Study on the architecture and associated technologies for internet of things. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2009, 29(6): 1-11. (in Chinese )
[16]   钱志鸿, 王义君. 物联网技术与应用研究. 电子学报, 2012, 40(5): 1023-1029.
Qian Z H, Wang Y J. IoT technology and application. Acta Electronica Sinica, 2012, 40(5): 1023-1029. (in Chinese )
[17]   于君, 王洋, 张雪英. 物联网技术应用实践及其体系结构. 自动化仪表, 2012, 33(3): 42-45, 49.
Yu J, Wang Y, Zhang X Y. The internet of things technology application practice and its system structure. Automation Instrumentation, 2012, 33(3): 42-45, 49. (in Chinese)
[18]   Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (iot): a vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, 29(7): 1645-1660.
[19]   Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: A survey on enabling technologies, protocols, and applications. Ieee Communications Surveys & Tutorials, 2015, 17(4): 2347-2376.
[20]   Sicari S, Rizzardi A, Grieco L A, Porisini A C. Security, privacy and trust in internet of things: The road ahead. Computer Networks, 2015, 76: 146-164.
[21]   陈海明, 崔莉, 谢开斌. 物联网体系结构与实现方法的比较研究. 计算机学报, 2013, 36(1): 168-188.
Chen H M, Cui L, Xie K B. A comparative study on architectures and implementation methodologies of internet of things. Chinese Journal of Computers, 2013, 36(1): 168-188. (in Chinese )
[22]   陈美镇, 王纪章, 李萍萍, 周金生, 夏得峰. 基于Android系统的温室异构网络环境监测智能网关开发. 农业工程学报, 2015, 31(5): 218- 225.
Chen M Z, Wang J Z, Li P P, Zhou J S, Xia D F. Development of intelligent gateway for heterogeneous networks environment monitoring in greenhouse based on Android system. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 218-225. (in Chinese)
[23]   陈晓栋, 原向阳, 郭平毅, 宁娜, 郭美俊, 兰艳亭. 农业物联网研究进展与前景展望. 中国农业科技导报, 2015, 17(2): 8-16.
Chen X D, Yuan X Y, Guo P Y, Ning N, Guo M J, Lan Y T. Progress and prospect in agricultural internet of things. Journal of Agricultural Science and Technology, 2015, 17(2): 8-16. (in Chinese )
[24]   何勇, 聂鹏程, 刘飞. 农业物联网与传感仪器研究进展. 农业机械学报, 2013, 44(10): 216-226.
He Y, Nie P C, Liu F. Advancement and trend of internet of things in agriculture and sensing instrument. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 216-226. (in Chinese )
[25]   章伟聪, 俞新武, 李忠成. 基于CC2530及ZigBee协议栈设计无线网络传感器节点. 计算机系统应用, 2011, 20(7): 120, 184-187.
Zhang W C, Yu X W, Li Z C. Wireless network sensor node design based on CC2530 and Zig Bee protocol stack. Computer Systems & Applications, 2011, 20(7): 120, 184-187. (in Chinese )
[26]   屈利华, 赵春江, 杨信廷, 陈明, 孙传恒, 周超. ZigBee无线传感器网络在温室多源数据采集系统中的应用综述. 中国农机化, 2012(4): 179-183.
Qu L H, Zhao C J, Yang X T, Chen M, Sun C H, Zhou C. Application of ZigBee wireless sensor network in multiple-source data acquisition system of greenhouse. Chinese Agricultural Mechanization, 2012(4): 179-183. (in Chinese)
[27]   陈华凌, 陈岁生, 张仁政. 基于ZigBee无线传感器网络的水环境监测系统. 仪表技术与传感器, 2012, 1(1): 71-73.
Chen H L, Chen S S, Zhang R Z. Water environment monitoring system based on ZigBee wireless sensor networks. Instrument Technique and Sensor, 2012, 1(1): 71-73. (in Chinese )
[28]   Qi L, Zhang J, Xu M, Fu Z T, Chen W, Zhang X S. Developing WSN-based traceability system for recirculation aquaculture. Mathematical and Computer Modelling, 2011, 53(11): 2162-2172.
[29]   李小敏, 臧英, 罗锡文, 李腾, 刘永鑫, 孔庆军. 兰花大棚内无线传感器网络433MHz信道传播特性试验. 农业工程学报, 2013, 29(13): 182-189.
Li X M, Zang Y, Luo X W, Li T, Liu Y X, Kong Q J. Experiment of propagation characteristics based on 433MHz channel of WSN in orchid greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 182-189. (in Chinese )
[30]   张传帅, 张天蛟, 张漫, 刘刚, 王辉, 于亮亮, 李婷. 基于WSN的温室环境信息远程监测系统. 中国农业大学学报, 2014, 19(5): 168-173.
Zhang C S, Zhang T J, Zhang M, Liu G, Wang H, Yu L L, Li T. Remote environmental monitoring system for greenhouse based on WSN. Journal of China Agricultural University, 2014, 19(5): 168-173. (in Chinese )
[31]   Vijayakumar N, Ramya R. The real time monitoring of water quality in Iot environment//2015 International Conference on Innovations in Information, Embedded and Communication Systems (iciiecs), 2015: 1-5.
[32]   Lin F T, Kuo Y C, Hsieh J C, Tsai H Y, Liao Y T, Lee H C. A Self-powering wireless environment monitoring system using soil energy. Ieee Sensors Journal, 2015, 15(7): 3751-3758.
[33]   Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, Borozan V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 2015, 88: 297-307.
[34]   倪军, 王婷婷, 姚霞, 曹卫星, 朱艳. 作物生长信息获取多光谱传感器设计与试验. 农业机械学报, 2013, 44(5): 207-212.
Ni J, Wang T T, Yao X, Cao W X, Zhu Y. Design and experiments of multi-spectral sensor for rice and wheat growth information. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 207-212. (in Chinese )
[35]   谭昌伟, 杨昕, 罗明, 马昌, 严翔, 陈亭亭. 以HJ-CCD影像为基础的冬小麦孕穗期关键苗情参数遥感定量反演. 中国农业科学, 2015, 48(13): 2518-2527.
Tan C W, Yang X, Luo M, Ma C, Yan X, Chen T T. Quantitative inversion of key seedling condition parameters in winter wheat at booting stage using remote sensing based on HJ-CCD images. Scientia Agricultura Sinica, 2015, 48(13): 2518-2527. (in Chinese )
[36]   Handcock R N, Swain D L, Bishop-hurley G J, Patison K P, Wark T, Valencia P, Corke P, O’Neill C J. Monitoring animal behavior and environmental interactions using wireless sensor networks, Gps collars and satellite remote sensing. Sensors, 2009, 9(5): 3586-3603.
[37]   Nagl L, Schmitz R, Warren S, Hildreth T S, Erickson H, Andresen D. Wearable sensor system for wireless state-of- health determination in Cattle// Proceedings of the 25th Annual International Conference of the Ieee, Engineering in Medicine and Biology Society, 2003, 17: 3012-3015.
[38]   熊本海, 罗清尧, 杨亮. 家畜精细饲养物联网关键技术的研究. 中国农业科技导报, 2011, 13(5): 19-25.
Xiong B H, Luo Q Y, Yang L. Studies on key thing internet technology for precise livestock feeding. Journal of Agricultural Science and Technology, 2011, 13(5): 19-25. (in Chinese )
[39]   刘双印, 徐龙琴, 李道亮, 段青玲, 魏晓华. 基于物联网的南美白对虾疾病远程智能诊断系统. 中国农业大学学报, 2014, 19(2): 189-195.
Liu S Y, Xu L Q, Li D L, Duan Q L, Wei X H. Research on remote system for disease diagnosis of Penaeus vannamei based on internet of things. Journal of China Agricultural University, 2014, 19(2): 189-195. (in Chinese )
[40]   González L A, Bishop-hurley G J, Handcock R N, Crossman C. Behavioral classification of data from collars containing motion sensors in grazing cattle. Computers and Electronics in Agriculture, 2015, 110: 91-102.
[41]   Kumar A, Hancke G P A. A Zigbee-based animal health monitoring system. Ieee Sensors Journal, 2014, 15(1): 610-617.
[42]   李洪, 姚光强, 陈立平. 基于GPS、GPRS和GIS的农机监控调度系统. 农业工程学报, 2008, 24(增刊2): 119-122.
Li H, Yao G Q, Chen L P. Farm machinery monitoring and scheduling system based on GPS, GPRS and GIS. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(Suppl.2): 119-122. (in Chinese )
[43]   胡静涛, 高雷, 白晓平, 李逃昌, 刘晓光. 农业机械自动导航技术研究进展. 农业工程学报, 2015, 31(10): 1-10.
Hu J T, Gao L, Bai X P, Li T C, Liu X G. Review of research on automatic guidance of agricultural vehicles. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 1-10. (in Chinese)
[44]   Backman J, Piirainen P, Oksanen T. Smooth turning path generation for agricultural vehicles in headlands. Biosystems Engineering, 2015, 139: 76-86.
[45]   English A, Ross P, Ball D, Upcroft B, Corke P. Learning crop models for vision-based guidance of agricultural robots//2015 Ieee/rsj International Conference on Intelligent Robots and Systems (iros), 2015: 1158-1163.
[46]   许世卫. 我国农业物联网发展现状及对策. 中国科学院院刊, 2013, 28(6): 686-692.
Xu S W. Current status of agricultural IOT in China. Bulletin of Chinese Academy of Sciences, 2013, 28(6): 686-692. (in Chinese)
[47]   孙通, 徐惠荣, 应义斌. 近红外光谱分析技术在农产品/食品品质在线无损检测中的应用研究进展. 光谱学与光谱分析, 2009, 29(1): 122-126.
Sun T, Xu H R, Ying Y B. Progress in application of near infrared spectroscopy to nondestructive on-line detection of products/food quality. Spectroscopy and Spectral Analysis, 2009, 29(1): 122-126. (in Chinese)
[48]   Costa C, Antonucci F, Pallottino F, Aguzzi J, Sarriá D, Menesatti P. A Review on agri-food supply chain traceability by means of RFID technology. Food and Bioprocess Technology, 2013, 6(2): 353-366.
[49]   刘寿春, 赵春江, 杨信廷, 王国利, 钟赛意. 冷链物流过程猪肉微生物污染与控制图设计. 农业工程学报, 2013, 29(7): 254-260.
Liu S C, Zhao C J, Yang X T, Wang G L, Zhong S Y. Microbial contamination of chilled pork in cold chain logistics and its control chart design. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 254-260. (in Chinese )
[50]   杨信廷, 钱建平, 孙传恒, 赵春江, 王俊英, 台社红, 侯彦林. 蔬菜安全生产管理及质量追溯系统设计与实现. 农业工程学报, 2008, 24(3): 162-166.
Yang X T, Qian J P, Sun C H, Zhao C J, Wang J Y, Tai S H, Hou Y L. Design and application of safe production and quality traceability system for vegetable. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 162-166. (in Chinese )
[51]   Kumari L, Narsaiah K, Grewal M K, Anurag R K. Application of Rfid in agri-food Sector. Trends in Food Science & Technology, 2015, 43(2): 144-161.
[52]   Badia-melis R, Mishra P, Ruiz-garcía L. Food traceability: New trends and recent advances. a review. Food Control, 2015, 57: 393-401.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!