Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4299-4309.doi: 10.3864/j.issn.0578-1752.2016.22.004

;

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Recent Advances in Identification and Functional Analysis of Genes Responsible for Soybean Nutritional Quality

ZHANG Yu-qin, LU Xiang, LI Qing-tian, CHEN Shou-yi, ZHANG Jin-song   

  1. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
  • Received:2016-08-12 Online:2016-11-16 Published:2016-11-16

Abstract: Soybean is one of the most important cash crops and provides edible oil and vegetable proteins for human beings. The study of soybean is recently focused by researchers, breeders and public people, because its value is mainly determined by the content of oil, protein and isoflavones and the quality of soybean is directly related to the health of the human body. The profile of fatty acids in soybean oil has a great influence on the nutritional value, storage and processing technology. And the profile and accumulation of soybean oil was determined by activity of oil-biosynthesis-related genes, which regulated by many genes at pre-transcriptional, transcriptional and post-transcriptional levels. Recent study reveals that GmDof4 and GmDof11 were found to increase the content of total fatty acids and lipids in GmDof4 and GmDof11 transgenic Arabidopsis seeds, which activated the acetyl CoA carboxylase gene and long-chain-acyl CoA synthetase gene. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants by promoting PLDα1 expression whose promoter can be bound and inhibited by GL2. The GmbZIP123 transgene promoted expression of two sucrose transporter genes (SUC1 and SUC5) and three cell-wall invertase genes (cwINV1, cwINV3, and cwINV6) by binding directly to the promoters of these genes, and increased seed oil-content. And GmNFYA promoted master regulator WRI and oil-biosynthesis-related genes to increase seed oil-content. Soybean protein contains 8 kinds of essential amino acids, and is a kind of excellent quality of vegetable protein which can replace some animal protein in the diet. The accumulation of plant oil and protein is often negatively related. GmDof4 and DmDof11 down-regulated the storage protein gene, CRA1, through direct binding promoter although GmDof4 and GmDof11 enhanced seed oil-content. Soybean isoflavones are secondary metabolites formed during the growth of soybean, which have a wide range of biological activities and physiological functions in animals and plants. In recent years, soybean isoflavones have become one of the most attractive functional components, and are also one of the hot spots in food and nutrition research. Flavonoids may regulate the development, growth, propagation and nitrogen fixation of plants by regulating the production of nodules. Beneficial effects of soybean isoflavones are shown in the treatment of breast cancer, prostate cancer, cardiovascular disease and osteoporosis. GmMYB176 can regulate the expression of CHS8, and the interference of GmMYB176 expression decreased the soybean isoflavones levels in hair, indicating that GmMYB176 is essential for isoflavones biosynthesis. This review summarized the recent progresses in the gene cloning and regulation of soybean oil, storage protein and isoflavones accumulation. Other relevant advances and prospects were also compared and discussed. This review may give the current status of the studies on the regulatory mechanisms of soybean nutritional quality.

Key words: soybean, oil, seed storage protein, isoflavones

[1]    Ke T, Yu J, DongC, Mao H, Hua W, Liu S. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism. BMC Plant Biology, 2015, 15: 19.
[2]    Wei W H, Chen B, Yan X H, Wang L J, Zhang H F, Cheng J P, Zhou X A, Sha A H, Shen H. Identification of differentially expressed genes in soybean seeds differing in oil content. Plant Science, 2008, 175(5): 663-673.
[3]    Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S H, Wang W, Tian Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
[4]    Li Z G, Yin W B, Song L Y, Chen Y H, Guan R Z, Wang J Q, Wang R R, Hu Z M. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution. Genome, 2011, 54(3): 202-211.
[5]    Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett T P. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Plant Biotechnology Journal, 2015, 13(6): 858-865.
[6]    Durrett T P, McClosky D D, Tumaney A W, Elzinga D  A, Ohlrogge J, Pollard M. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9464-9469.
[7]    Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss J G, Gorkiewicz G, Zechner R. Adipose triglyceride lipase- mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metabolism, 2016, 3(5): 309-319.
[8]    James C N, Horn P J, Case C R, Gidda S K, Zhang D, Mullen R T, Dyer J M, Anderson R G, Chapman K D. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin- Dorfman-like lipid droplet accumulation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17833-17838.
[9]    Romero P, Rodrigo M J, Alferez F, Ballester A R, Gonzalez-Candelas L, Zacarias L, Lafuente M T. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. Journal of Experimental Botany, 2012, 63(7): 2753-2767.
[10]   Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross- talk between two stress signaling pathways. Current Opinion in Plant Biology, 2000, 3(3): 217-223.
[11]   Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. The Plant Journal, 2004, 40(4): 575-585.
[12]   Focks N, Benning C. wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiology, 1998, 118(1): 91-101.
[13]   Mu J Y, Tan H L, Zheng Q, Fu F Y, Liang Y, Zhang J A, Yang X H, Wang T, Chong K, Wang X J, Zuo J R. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiology, 2008, 148(2): 1042-1054.
[14]   Wang H Y, Guo J H, Lambert K N, Lin Y. Developmental control of Arabidopsis seed oil biosynthesis. Planta, 2007, 226(3): 773-783.
[15]   Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. The Plant Journal, 2007, 50(5): 825-838.
[16]   Mendoza M S, Dubreucq B, Miquel M, Caboche M, Lepiniec L. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Letters, 2005, 579(21): 4666-4670.
[17]   Crowe A J, Abenes M, Plant A, Moloney M M. The seed-specific transactivator, ABI3, induces oleosin gene expression. Plant Science, 2000, 151(2): 171-181.
[18]   Pan Y, Tchagangl A, Berube H, Phan S, Shearer H, Liu Z, Fobert P, Famili F. Integrative data mining in functional genomics of Brassica napus and Arabidopsis thaliana. Trends in Applied Intelligent Systems, 2010, 6098: 92-101.
[19]   Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto  A, Hattori T. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant and Cell Physiology, 2005, 46(3): 399-406.
[20]   Kroj T, Savino G, Valon C, Giraudat J, Parcy F. Regulation of storage protein gene expression in Arabidopsis. Development, 2003, 130(24): 6065-6073.
[21]   To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F. A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant Cell, 2006, 18(7): 1642-1651.
[22]   Tsai A Y, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. The Plant Journal, 2012, 69(5): 809-821.
[23]   Agarwal P, Kapoor S, Tyagi A K. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays, 2011, 33(3): 189-202.
[24]   Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiology and Biochemistry, 2009, 47(6): 448-455.
[25]   Deng W, Chen G, Peng F, Truksa M, Snyder C L, Weselake R J. Transparent Testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in Canola. Plant Physiology, 2012, 160(2): 978-989.
[26]   Shi L, Katavic V, Yu Y, Kunst L, Haughn G. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. The Plant Journal, 2012, 69(1): 37-46.
[27]   Zou H F, Zhang Y Q, Wei W, Chen H W, Song Q X, Liu Y F, Zhao M Y, Wang F, Zhang B C, Lin Q, Zhang W K, Ma B, Zhou Y H, Zhang J S, Chen S Y. The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochemical Journal, 2013, 449(2): 373-388.
[28]   Peng F Y, Weselake R J. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics, 2011, 12: 286.
[29]   Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed- specific transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8063-8070.
[30]   Bobb A J, Chern M S, Bustos M M. Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucleic acids research, 1997, 25(3): 641-647.
[31]   Ng D W K, Hall T C. PvALF and FUS3 activate expression from the phaseolin promoter by different mechanisms. Plant Molecular Biology, 2008, 66(3): 233-244.
[32]   Chern M S, Bobb A J, Bustos M M. The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. The Plant Cell, 1996, 8(2): 305-321.
[33]   Wang Q, Qi W, Wang Y, Sun F, Qian X, Luo X, Yang J. Isolation and identification of an AP2/ERF factor that binds an allelic cis-element of rice gene LRK6. Genetics Research, 2011, 93(5): 319-332.
[34]   Liu Y F, Li Q T, Lu X, Song Q X, Lam S M, Zhang W K, Ma  B, Lin Q, Man W Q, Du W G, Shui G H, Chen S Y, Zhang J S. Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biology, 2014, 14: 73.
[35]   Song Q X, Li Q T, Liu Y F, Zhang F X, Ma B, Zhang W K, Man W Q, Du W G, Wang G D, Chen S Y, Zhang J S. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. Journal of Experimental Botany, 2013, 64(14): 4329-4341.
[36]   Wang H W, Zhang B, Hao Y J, Huang J, Tian A G, Liao Y, Zhang J S, Chen S Y. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. The Plant Journal, 2007, 52(4): 716-729.
[37]   Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, Guo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang R R C, Hu Z. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnology for Biofuels, 2014, 7(1): 1-16.
[38]   Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals genetic basis of seed trait adaptation during domestication. The Plant Journal, 2016, 86(6): 530-544.
[39]   Zhang L, Yang X D, Zhang Y Y, Yang J, Qi G X, Guo D Q, Xing G J, Yao Y, Xu W J, Li H Y, Li Q Y, Dong Y S. Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. International Journal of Genomics, 2014: 921-950.
[40]   Murad A M, Vianna G R, Machado A M, da Cunha N B, Coelho C M, Lacerda V A, Coelho M C, Rech E L. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds. Analytical and Bioanalytical Chemistry, 2014, 406(12): 2873-2883.
[41]   Pham A T, Shannon J G, Bilyeu K D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theoretical and Applied Genetics, 2012, 125(3): 503-515.
[42]   Goettel W, Xia E, Upchurch R, Wang M L, Chen P, An Y Q. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genomics, 2014, 15: 299.
[43]   Ruddle P, Whetten R, Cardinal A, Upchurch R G, Miranda L. Effect of a novel mutation in a Delta9-stearoyl-ACP- desaturase on soybean seed oil composition. Theoretical and Applied Genetics, 2013, 126(1): 241-249.
[44] Eckert H, Vallee B L, Schweiger B J, Kinney A J, Cahoon E B, Clemente T. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta, 2006, 224(5): 1050-1057.
[45]   Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, Ge H, Yu J, Xuan N, Bi Y, He Q. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7(1): 32.
[46]   Song L Y, Zhang Y, Li S F, Hu J, Yin W B, Chen Y H, Hao S T, Wang B L, Wang R R, Hu Z M. Identification of the substrate recognition region in the Delta(6)-fatty acid and Delta(8)-sphingolipid desaturase by fusion mutagenesis. Planta, 2014, 239(4): 753-763.
[47] Li R, Hatanaka T, Yu K, Wu Y, Fukushige H, Hildebrand  D. Soybean oil biosynthesis: Role of diacylglycerol acyltransferases. Functional & Integrative Genomics, 2013, 13(1): 99-113.
[48]   Lardizabal K, Effertz R, Levering C, Mai J, Pedroso M C, Jury T, Aasen E, Gruys K, Bennett K. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiology, 2008, 148(1): 89-96.
[49]   Rao S S, Hildebrand D. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids, 2009, 44(10): 945-951.
[50]   Song L Y, Lu W X, Hu J, Zhang Y, Yin W B, Chen Y H, Hao S T, Wang B L, Wang R R, Hu Z M. Identification and functional analysis of the genes encoding Delta6-desaturase from Ribes nigrum. Journal of Experimental Botany, 2010, 61(6): 1827-1838.
[51]   李明春, 卜云萍, 王广科, 胡国武, 邢来君, 深黄被孢霉Δ6-脂肪酸脱氢酶基因在大豆中的表达. 遗传学报, 2004, 31(8): 858-863.
LI M C, Bu Y P, Wang G K, Hu G W, Xing L J. Heteologous expression of Mortierella isabellina delta6 -fatty acid desaturase gene in soybean. Acta Genetica Sinica, 2004, 31(8): 858-863. (in Chinese)
[52]   Xu X P, Liu H, Tian L, Dong X B, Shen S H, Qu L Q. Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chemistry, 2015, 172: 105-116.
[53]   Krishnan H B, Oehrle N W, Natarajan S S. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: A case study using Glycine max. Proteomics, 2009, 9(11): 3174-3188.
[54]   Ruíz-Henestrosa V P, Sánchez C C, Escobar M D M Y, Jiménez J J P, Rodríguez F M, Patino J M R. Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309(1/3): 202-215.
[55]   Achouri A, Boye J I, Yaylayan V A, Yeboah F K. Functional properties of glycated soy 11S glycinin. Journal of Food Science, 2005, 70(4): C269-C274.
[56]   Xu C H, Yang X Q, Yu S j, Qi J r, Guo R, Sun W W, YaoY J, Zhao M M. The effect of glycosylation with dextran chains of differing lengths on the thermal aggregation of β-conglycinin and glycinin. Food Research International, 2010, 43(9): 2270-2276.
[57]   Withana-Gamage T S, Hegedus D D, Qiu X, Yu P, May T, Lydiate D, Wanasundara J P D. Characterization of Arabidopsis thaliana lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy. Journal of Agricultural and Food Chemistry, 2013, 61(4): 901-912.
[58] Jaworski A F, Aitken S M. Expression and characterization of the Arabidopsis thaliana 11S globulin family. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014, 1844(4): 730-735.
[59]   Paek N C, Imsande J, Shoemaker R C, Shibles R. Nutritional control of soybean seed storage protein. Crop Science, 1997, 37(2): 498-503.
[60]   Wang J, Liu L, Guo Y, Wang Y H, Zhang L, Jin L G, Guan R X, Liu Z X, Wang L L, Chang R Z, Qiu L J. A dominant locus, qBSC-1, controls β subunit content of seed storage protein in soybean (Glycine max (L.) Merri.). Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.
[61]   Chern M S, Eiben H G, Bustos M M. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos. The Plant Journal, 1996, 10(1): 135-148.
[62]   Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. The Plant cell, 1994, 6(11): 1567-1582.
[63]   Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. The Plant Cell, 1997, 9(8): 1265-1277.
[64]   Kirik V, Kölle K, Balzer H J, Bäumlein H. Two new oleosin isoforms with altered expression patterns in seeds of the Arabidopsis mutant fus3. Plant Molecular Biology, 1996, 31(2): 413-417.
[65]   Bäumlein H, Miséra S, Luerßen H, Kölle K, Horstmann C, Wobus U, Müller A J. The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. The Plant Journal, 1994, 6(3): 379-387.
[66]   Söderman E M, Brocard I M, Lynch T J, Finkelstein R R. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiology, 2000, 124(4): 1752-1765.
[67]   Lotan T, Ohto M A, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93(7): 1195-1205.
[68]   Zhang Y, Cao G, Qu L J, Gu H. Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Reports, 2009, 28(3): 337-346.
[69]   Che N, Yang Y, Li Y, Wang L, Huang P, Gao Y, An C. Efficient LEC2 activation of OLEOSIN expression requires two neighboring RY elements on its promoter. Science in China Series C: Life Sciences, 2009, 52(9): 854-863.
[70]   El-Shemy H A, Khalafalla M M, Fujita K, Ishimoto M. Improvement of protein quality in transgenic soybean plants. Biologia Plantarum, 2007, 51(2): 277-284.
[71]   Li Z, Meyer S, Essig S J, Liu Y, Schapaugh A M, Muthukrishnan S, Hainline E B, Trick N H. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Molecular Breeding, 2005, 16(1): 11-20.
[72]   Dinkins R D, Srinivasa Reddy M S, Meurer C A, Yan B, Trick H, Thibaud-Nissen F, Finer J J, Parrott W A, Collins G B. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(6): 742-747.
[73]   Zhang C, Meng Q, Gai J, Yu D. Cloning and functional characterization of an O-acetylserine(thiol)lyase-encoding gene in wild soybean (Glycine soja). Molecular Biology Reports, 2008, 35(4): 527-534.
[74]   Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D. Characterization of O-acetylserine(thiol)lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.]. Plant Molecular Biology Reporter, 2008, 26(4): 277-291.
[75]   Ning H, Zhang C, Yao Y, Yu D. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnology Letters, 2010, 32(4): 557-564.
[76]   Zhang D, Kan G, Hu Z, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao D, Yu D. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theoretical and Applied Genetics, 2014, 127(9): 1905-1915.
[77]   Lane G A, Biggs D R, Russell G B, Sutherland O R W, Williams E M, Maindonald J H, Donnell D J. Isoflavonoid feeding deterrents for costelytra zealandica structure- activity relationships. Journal of Chemical Ecology, 1985, 11(12): 1713-1735.
[78]   Cho M J, Harper J E. Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiology, 1991, 95(2): 435-442.
[79]   Pregelj L, McLanders J R, Gresshoff P M, Schenk P M. Transcription profiling of the isoflavone phenylpropanoid pathway in soybean in response to Bradyrhizobium japonicum inoculation. Functional Plant Biology, 2010, 38(1): 13-24.
[80]   Ashton E, Ball M. Effects of soy as tofu vs meat on lipoprotein concentrations. European Journal of Clinical Nutrition, 2000, 54(1): 14-19.
[81]   Masilamani M, Wei J, Sampson H A. Regulation of the immune response by soybean isoflavones. Immunologic Research, 2012, 54(1): 95-110.
[82]   Regal J F, Fraser D G, Weeks C E, Greenberg N A. Dietary phytoestrogens have anti-inflammatory activity in a Guinea pig model of asthma. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223(4): 372-378.
[83]   Jung W, Yu O, Lau S M C, O'Keefe D P, Odell J, Fader G, McGonigle B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnology, 2000, 18(2): 208-212.
[84]   Pandey A, Misra P, Khan M P, Swarnkar G, Tewari M C, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi P K. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnology Journal, 2014, 12(1): 69-80.
[85]   Yi J, Derynck M R, Li X, Telmer P, Marsolais F, Dhaubhadel S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. The Plant Journal, 2010, 62(6): 1019-1034.
[86]   Jez J M, Bowman M E, Dixon R A, Noel J P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Structural & Molecular Biology, 2000, 7(9): 786-791.
[87]   Dhaubhadel S, Li X. A new client for 14-3-3 proteins: GmMYB176, an R1 MYB transcription factor. Plant Signaling & Behavior, 2010, 5(7): 921-923.
[88]   Yu O, Shi J, Hession A O, Maxwell C A, McGonigle B, Odell J T. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry, 2003, 63(7): 753-763.
[89]   Cheng H, Yu O, Yu D. Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Science, 2008, 175(4): 505-512.
[90]   田玲. 调控大豆异黄酮合成相关转录因子基因的克隆与表达模式分析[D]. 北京: 中国农业科学院, 2014.
Tian L. Cloning and expression profile analysis of transcription factor genes regulating isoflavone synthesis in soybean [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[91]   杨文杰, 吴燕民, 唐益雄. 大豆MYB基因GmMYBJ7的克隆及表达分析. 华北农学报, 2011, 26(5): 107-111.
YANG W J, WU Y M, TANG Y X. Cloning and characterization of the MYB gene GmMYBJ7 from soybean. Acta Agriculturae Boreali- Sinica, 2011, 26(5): 107-111. (in Chinese)
[92]   Liu X, Yuan L, Xu L, Xu Z, Huang Y, He X, Ma H, Yi J, Zhang D. Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max L.). Plant Biotechnology Reports, 2013, 7(4): 445-455.
[93]   Fernández-Marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril J M, García-Plazaola J I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology, 2014, 14(1): 1-11.
[94]   Bhunia R K, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti M K, Sen S K. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Molecular Biology, 2014, 86(4): 351-365.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[6] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[9] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[10] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[11] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[12] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[13] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[14] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[15] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!