Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4284-4298.doi: 10.3864/j.issn.0578-1752.2016.22.003

;

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Progress in Research on Genetic Improvement of Nutrition and Health Qualities in Wheat

ZHANG Yong1, HAO Yuan-feng1, ZHANG Yan1, HE Xin-yao2, XIA Xian-chun1, HE Zhong-hu1,3   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Wheat Improvement Center, Beijing 100081
    2CIMMYT, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
    3CIMMYT-China Office, c/o CAAS, Beijing 100081
  • Received:2016-04-05 Online:2016-11-16 Published:2016-11-16

Abstract: The role of nutrition and health has become one of the main targets of research and breeding for major crops in the world. The research progress on micronutrients involving iron and zinc, resistant starch, dietary fibre as arabinoxylans, and a range of phytochemicals involving phenolic acids and sterols related to wheat quality, as well as wheat sensitivity and fusarium head blight related deoxynivalenol that have an impact on human health was reviewed from breeding point of view. Laboratory evaluation methods, germplasm screening, and QTL mapping on nutrition quality parameters as well as breeding, were summarized. China’s major strategies on wheat breeding program for nutrition and health improvement were proposed, with the following four areas being advanced: (1) analysis of the contents of micronutrients involving iron, zinc, as well as the bioavailability related factors phytate content and phytase activity, dietary fibres such as arabinoxylans and resistant starch, and phytochemicals involving phenolic acid and sterols should be strengthened, to screen materials with high quality of micronutrients, dietary fibre, and phytochemicals; (2) more efforts should be made in study on fusarium head blight and the results of study should be used in wheat breeding as early as possible; (3) development and utilization of molecular markers, especially functional markers in conventional breeding programs for speeding up wheat breeding, on the basis of gene mapping and cloning; (4) establishment of initiative project through strengthening international cooperation and domestic collaboration in research on addressing wheat quality, to find and extend the utilization of high quality methods on nutrients analyzation. The review addressed some crucial information on wheat related research and breeding programs for nutrition and health quality improvement.

Key words: common wheat, nutrition quality, micronutritient, dietary fibre, resistant starch, deoxynivalenol

[1]    何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202-215.
HE Z H, XIA X C, CHEN X M, ZHUANG Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomic Sinica, 2011, 37: 202-215. (in Chinese)
[2]    ANDERSSON A A M, DIMBERG L, ÅMAN P, LANDBERG R. Recent findings on certain bioactive components in whole grain wheat and rye. Journal of Cereal Science, 2014, 59: 294-311.
[3]    BOUIS H E, WELCH R M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 2010, 50: S20-S32.
[4]    JONES J M, PEÑA R J, KORCZAK R, BRAUN H. Carbohydrates, grains, and wheat in nutrition and health: an overview Part II. Grain terminology and nutritional contributions. Cereal Foods World, 2015, 60: 260-271.
[5]    WARD J L, POUTANEN K, GEBRUERS K, PIIRONEN V, LAMPI A M, NYSTROM L, ANDERSSON A A M, AMAN P, BOROS D, RAKSZEGI M, BEDO Z, SHEWRY P R. The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. Journal of Agricultural and Food Chemistry, 2008, 56: 9699-9709.
[6]    World Health Organization. Worldwide prevalence of anaemia 1993-2005. WHO Global Database on Anaemia. Geneva: World Health Organization, 2008.
[7]    陈春明. 中国营养状况十年跟踪1990-2000. 北京: 中国医学出版社, 2004.
CHEN C M. Ten-year Tracking Nutrition Status in China. Beijing: People’s Medical Press, 2004. (in Chinese)
[8]    Food and Agriculture Organization. Vitamin and mineral requirements in human nutrition: [report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21-30 September 1998: Geneva: World Health Organization, c2004. 2nd ed., 2004.
[9]    张春义, 王磊. 生物强化在中国-培育新品种提供好营养. 北京: 中国农业科学与技术出版社, 2009.
ZHANG C Y, WANG L. Harvest Plus-China: Breeding Crops for Better Nutrition. Beijing: China Agricultural Science and Technology Press, 2009. (in Chinese)
[10]   World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficiency. Geneva: World Health Organization, 2009.
[11]   TRACY M I, MOLLER G. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part 1: Selenium. Journal of Association of Official Analytical Chemists, 1990, 73: 404-410.
[12]   CAKMAK I, OZAKAN H, BRAUN J J, WELCH R M, ROMHELD V. Zinc and iron concentrations in seeds of wild, primitive and modern wheats//Improving Human Nutrition through Agriculture: the Role of International Agriculture Research. Workshop Hosted by International Rice Research Institute, Los Banos, Philippines and organized by the International Food Policy Research Institute, 5-7 October, 1999.
[13]   CAKMAK I, TORUN A, MILLET E, FELDMAN M, FAHIMA T, KOROL A B, NEVO E, BRAUN H J, OZKAN H. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition, 2004, 50: 1047-1054.
[14]   PELEG Z, SARANGA Y, YAZICI A, FAHIMA T, OZTUR L, CAKMAK I. Grain zinc, iron and protein contentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil, 2008, 306: 57-67.
[15]   FICCO D B M, RIEFOLO C, NICASTRO G, DE SIMONE V, DI GESU A M, BELEGGIA R, PLATANI C, CATTIVELLI L, DE VITA P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Research, 2009, 111: 235-242.
[16]   LIU Z H, WANG H Y, WANG X E, ZHANG G P, CHEN P D, LIU D J. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat. Journal of Cereal Science, 2006, 44: 212-219.
[17]   OURY F X, LEENHARDT F, R?M?SY C, CHANLIAUD E, DUPERRIER B, BALFOURIERA F, CHARMET G. Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat. European Journal of Agronomy, 2006, 25: 177-185.
[18]   ZHANG Y, SONG Q C, YAN J, TANG J W, ZHAO R R, ZHANG Y Q, HE Z H, ZOU C Q, ORTIZ-MONASTERIO I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174: 303-313.
[19]   GRAHAM R D, SENADHIRA D, BEEBE S, IGLESIAS C, MONASTERIO I. Breeding for micronutrient density in edible portions of staple food crops conventional approaches. Field Crops Research, 1999, 60: 57-80.
[20]   ORTIZ-MONASTERIO I, PALACIOS-ROJAS N, MENG E, PIXLEY K, TRETHOWAN R, PEÑA R J. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 2007, 46: 293-307.
[21]   MORGOUNOV A, GÓMEZ-BECERRA H F, ABUGALIEVA A, DZHUNUSOVA M, YESSIMBEKOVA M, MUMINJANOV H, ZELENSKIY Y, OZTURK L, CAKMAK I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 2007, 155: 193-203.
[22] GRAHAM R D, WELCH R, BOUIS H E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy, 2012, 70: 77-142.
[23]   VELU G, ORTIZ-MONASTERIO I, CAKMAK I, HAO Y, SINGH R P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 2014, 59: 365-372.
[24]   TIWARI V K, RAWAT N, CHHUNEJA P, NEELAM K, AGGARWAL R, RANDHAWA G S, DHALIWAL H S, KELLER B, SINGH K. Mapping of quantitative trait Loci for grain iron and zinc concentration in diploid A genome wheat. Journal of Heredity, 2009, 100: 771-776.
[25]   TIWARI C, WALLWORK H, ARUN B, MISHRA V K, VELU G, STANGOULIS J, KUMAR U, JOSHI A K. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica, 2016, 207: 563-570.
[26]   SRINIVASA J, ARUN B, MISHRA V, SINGH G, VELU G, BABU R, VASISTHA N, JOSHI A. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theoretical and Applied Genetics, 2014, 127: 1643-1651.
[27]   SRINIVASA J, ARUN B, MISHRA V, SINGH G, VELU G, BABU R, VASISTHA N, JOSHI A. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theoretical and Applied Genetics, 2014, 127: 1643-1651.
[28]   SHI R L, LI H, TONG Y P, JING R L, ZHANG F S, ZOU C Q. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil, 2008, 306: 95-104.
[29]   HAO Y, VELU G, PEÑA R, SINGH S, SINGH R. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular Breeding, 2014, 34: 1893-1902.
[30]   OH B C, CHOI W C, PARK S, KIM Y O, OH T K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 2004, 63: 362-372.
[31]   GUTTIERI M J, BOWEN D, DORSH J A, RABOY V, SOUZA E. Identification and characterization of a low phytic acid wheat. Crop Science, 2004, 44: 418-424.
[32]   MAUGENEST S, MARTINEZ I, GODIN B, PEREZ P, LESCURE A M. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Molecular Biology, 1999, 39: 503-514.
[33]   WYSS M, PASAMONTES L, FRIEDLEIN A, REMY R, TESSIER  M, KRONENBERGER A, MIDDENDORF A, LEHMANN M, SCHNOEBELEN L, RÓTHLISBERGER U, KUSZNIR E, WAHL G, MULLER F, LAHM H W, VOGEL K, VAN LOON A P G M. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Applied and Environmental Microbiology, 1999, 65: 359-366.
[34]   李颖睿, 陈茹梅, 阎俊, 何中虎, 张勇. 黄淮冬麦区小麦品种植酸含量与植酸酶活性分析. 作物学报, 2014, 40: 329-336.
LI Y R, CHEN R M, YAN J, HE Z H, ZHANG Y. Variability of phytate content and phytase activity among wheat cultivars from the Yellow and Huai River Valleys. Acta Agronomic Sinica, 2014, 40: 329-336. (in Chinese)
[35]   RAM S, VERMA A, SHARMA S. Large variability exits in phytase levels among Indian wheat varieties and synthetic hexaploids. Journal of Cereal Science, 2010, 52: 486-490.
[36]   LAFIANDRA D, RICCARDI G, SHEWRY P R. Improving creeal grain carbohydrates for diet and health. Journal of Cereal Science, 2014, 59: 312-326.
[37]   RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: a review. Journal of Science of Food and Agriculture, 2015, 95: 1968-1978.
[38]   CHAMP M, LANGKILDE A M, BROUNS F, KETTLITZ B, BAIL-COLLET Y L. Advances in dietary fibre characterisation: 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutrition Research Reviews, 2003, 16: 143-161.
[39]   RAHMAN S, BIRD A, REGINA A, LI Z Y, RAL J P, McMAUGH S, TOPPING D, MORELL M. Resistant starch in cereal: Exploiting genetic engineering and genetic variation. Journal of Cereal Science, 2007, 46: 251-260.
[40]   YAMAMORI M, QUYNH N T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics, 2000, 100: 32-38.
[41]   KONIK-ROSE C, THISTLETON J, CHANVRIER H, TAN I, HALLEY P, GIDLEY A, RAHMAN S, MORELL M, LI Z. Effects of starch synthase Ⅱa gene dosage on grain, protein and starch in endosperm of wheat. Theoretical and Applied Genetics, 2007, 115: 1053-1065.
[42]   ROBERTS J, JONES G P, RUTSIHAUSER I H E, BIRKETT A, GIBBONS C. Resistant starch in the Australian diet. Nutrion and Dietetics, 2004, 61: 98-104.
[43]   REGINA A, BIRD A, TOPPING D, BOWDEN S, FREEMAN J, BARSBY T, KOSAR-HASHEMI B, LI Z, RAHMAN S, MORELL M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Science of the USA, 2006, 103: 3546-3551.
[44]   MORELL M K, KOSAR-HASHEMI B, CMIEL M, SAMUEL M S, CHANDLER P, RAHMAN S, BULEON A, BATEY I L, LI Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 2003, 34: 173-185.
[45]   NUGENT A P. Health properties of resistant starch. Nutrition Bulletin, 2005, 30: 27-54.
[46]   SARIS W H, ASP N G, BJÓRCK I, BLAAK E, BORNET F, BROUNS F, FRAYN K N, FÜRST P, RICCARDI G, ROBERFROID M, VOGEL M. Functional food science and substrate metabolism. British Journal of Nutrition, 1998, 80: S47-S75.
[47]   BROEKAERT W F, COURTIN C M, VERBEKE K, VAN DE WIELE T, VERSTRAETE W, DELCOUR J A. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan- oligosaccharides, and xylooligosaccharides. Critical Reviews in Food Science and Nutrition, 2011, 51: 178-194.
[48]   SAULNIER L, SADO P E, BRANLARD G, CHARMET G, GUILLON F. Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science, 2007, 46: 261-281.
[49]   ANNINSON G. Relationship between the concentrations of soluble non-starch polysaccharides and the apparent metabolisable energy of wheat assayed in broiler chickens. Journal of Agricultural and Food Chemistry, 1991, 39: 1252-1256.
[50]   ENGLYST H N, QUIGLEY M E, HUDSON G J. Determination    of dietary fibre as non-starch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 1994, 119: 1497-1509.
[51]   KISZONAS A M, COURTIN C M, MORRIS C F. A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay. Cereal Chemistry, 2012, 89: 143-150.
[52]   GEBRUERS K, DORNEZ E, BOROS D, DYNKOWSKA W, BEDÓ Z, RAKSZEGI M, DELCOUR J A, COUTIN C M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9740-9749.
[53]   FINNIE S, BETTGE A, MORRIS C. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chemistry, 2006, 83: 617-623.
[54]   DORNEZ E, GEBRUERS K, JOYE I J, DE KETELAERE B, LENARTZ J, MASSAUX C, BODSON B, DELCOUR J A, COURTIN C M. Effects of genotype, harvest year and genotype- by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science, 2008, 47: 180-189.
[55]   LI S, MORRIS C F, BETTGE A D. Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the U.S. Pacific Northwest. Cereal Chemistry, 2009, 86: 88-95.
[56]   MARTINANT J P, BILLOT A, BOUGUENNEC A, CHARMET G, SAULNIER L, BRANLARD G. Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. Journal of Cereal Science, 1999, 30: 45-48.
[57]   NGUYEN V L, HUYNH B L, WALLWORK H, STANGOULIS J. Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Science, 2011, 51: 1143-1150.
[58]   MARTINANT J, CADALEN T, BILLOT A, CHARTIER S, LEROY  P, BERNARD M, SAULNIER L, BRANLARD G. Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theoretical and Applied Genetics, 1998, 97: 1069-1075.
[59]   QURAISHI U M, ABROUK M, BOLOT S, PONT C, THROUDE M, GUILHOT N, CONFOLENT C, BORTOLINI F, PRAUD S, MURIGNEUX A, CHARMET G, SALSE J. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional and Integrative Genomics, 2009, 9: 473-484.
[60]   QURAISHI U M, MURAT F, ABROUK M, PONT C, CONFOLENT C, OURY F X, WARD J, BOROS D, GEBRUERS K, DELCOUR J A. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11: 71-83.
[61]   CHARMET G, MASOOD-QURAISHI U, RAVEL C, ROMEUF I, BALFOURIER F, PERRETANT M, JOSEPH J, RAKSZEGI M, GUILLON F, SADO P. Genetics of dietary fibre in bread wheat. Euphytica, 2009, 170: 155-168.
[62]   YANG L, ZHAO D H, YAN J, ZHANG Y L, XIA X C, TIAN Y B, HE Z H, ZHANG Y. QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica, 2016, 208: 205-214.
[63]   BORDES J, RAVEL C, LE GOUIS J, LAPIERRE A, CHARMET G, BALFOURIER F. Use of a global wheat core collection for association analysis of flour and dough quality traits. Journal of Cereal Science, 2011, 54: 137-147.
[64]   MATTILA P, PIHLAVA J M, HELLSTRÖM J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 2005, 53: 8290-8295.
[65]   DINELLI G, CARRETERO A S, DI S R, MAROTTI I, FU S, BENEDETTELLI S, GHISELLI L, GUTI?RREZ A F. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 2009, 1216: 7229-7240.
[66]   IRMAK S, JONNALA R S, MACRITCHIE F. Effect of genetic variation on phenolic acid and policosanol contents of Pegaso wheat lines. Journal of Cereal Science, 2008, 48: 20-26.
[67]   ZHANG Y, WANG L, YAO Y, YAN J, HE Z H. Phenolic acid profiles of Chinese wheat cultivars. Journal of Cereal Science 2012, 56: 629-635.
[68]   MOORE J, LIU J G, ZHOU K Q, YU L L. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry, 2006, 54: 5313-5322.
[69]   MA D, SUN D, ZUO Y, WANG C, ZHU Y, GUO T. Diversity of antioxidant content and its relationship to grain color and morphological characteristics in winter wheat grains. Journal of Integrative Agriculture, 2014, 13: 1258-1267.
[70]   DALY L E, KIRK P N, MOLLEY A, WEIR D G, SCOTT J M. Folate levels and neural tube defects. The Journal of the American Medical Association, 1995, 274: 1698-1702.
[71]   PIIRONEN V, EDELMANN M, KARILUOTO S, BEDO Z. Folate in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9726-9731.
[72]   ERNSTRON J D. Diet, neurochemicals and mental energy. Nutrition Reviews, 2001, 59: 22-24.
[73]   NURMI T, NYSTRO L, EDELMANN M, LAMPI A M, PIIRONEN V. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9710-9715.
[74]   LAMPI A M, NURMI T, OLLILAINEN V, PIIRONEN V. Tocopherols and tocotrienols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56: 9716-9721.
[75]   KUCEK L K, VEENSTRA L D, AMNUAYCHEEWA P, SORRELLS M E. A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety, 2015, 14: 285-302.
[76]   JACKSON J R, EATON W W, CASCELLA N G, FASANO A, KELLY D L. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatric Quarterly, 2012, 83: 91-102.
[77]   VINCENTINI O, BORRELLI O, SILANO M, GAZZA L, POGNA N, LUCHETTI R, DE VINCENZI M. T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in celiac disease patients. Clinical Nutrition, 2009, 28: 272-277.
[78]   WIESER H, SEILMEIER W, BELITZ H D. Quantitative determination of gliadin subgroups from different wheat cultivars. Journal of Cereal Science, 1994, 19: 149-155.
[79]   GIL-HUMANES J, PISTÓN F, TOLLEFSEN S, SOLLID L M, BARRO F. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Science of the USA, 2010, 107: 17023-17028.
[80]   HISCHENHUBER C, CREVEL R, JARRY B, M?KI M, MONERET- VAUTRIN D A, ROMANO A, TRONCONE R, WARD R. Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Alimentary Pharmacology & Therapeutics, 2006, 23: 559-575.
[81]   SEILMEIER W, VALDEZ I, MENDEZ E, WIEISER H. Comparative investigation of gluten proteins from different wheat species II. characterization of ω-gliadins. European Food Research and Technology, 2001, 212: 355-363.
[82]   LUPI R, MASCI S, ROGNIAUX H, TRANQUET O, BROSSARD C, LAFIANDRA D, MONERET-VAUTRIN D A, DENERY-PAPINI S, LARR? C. Assessment of the allergenicity of soluble fractions from GM and commercial genotypes of wheats. Journal of Cereal Science, 2014, 60: 179-186.
[83]   ALTENBACH S B, ALLEN P V. Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops, 2011, 2: 66-73.
[84]   HAMMED A. Hulled wheats: a review of nutritional properties and processing methods. Cereal Chemistry, 2014, 91: 97-104.
[85]   BAI G H, SHANER G. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 2004, 42: 135-161.
[86]   史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014, 47: 3641-3654.
SHI J R, LIU X, QIU J B, CAI F, XU J H, DONG F, YIN X C, RAN J J. Deoxynivalenol contamination in wheat and its management. Scientia Agricutra Sinica, 2014, 47: 3641-3654. (in Chinese)
[87]   BUERSTMAYR H, BAN T, ANDERSON J A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 2009, 128: 1-26.
[88]   LI F Q, WANG W, MA J J, YU C C, LIN X H, YAN W X. Natural occurrence of masked deoxynivalenol in Chinese wheat and wheat-based products during 2008-2011. World Mycotoxin Journal, 2012, 5: 221-230.
[89]   GILBERT J, PASCALE M. Analytical methods for mycotoxins in the wheat chain. Mycotoxin Reduction in Grain Chains: John Wiley & Sons, Ltd; 2014: 169-188.
[90]   PEIRIS K H S, PUMPHREY M O, DONG Y, MAGHIRANG E B, BERZONSKY W, DOWELL F E. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chemistry, 2010, 87: 511-517.
[91]   HE X, SINGH P K, SCHLANG N, DUVEILLER E, DREISIGACKER S, PAYNE T, HE Z. Characterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT, Mexico. Euphytica, 2014, 195: 383-395.
[92]   庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003.
ZHUANG Q S. Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars. Beijing: China Agriculture Press, 2003. (in Chinese)
[93]   LIU S Y, HALL M D, GRIFFEY C A, McKENDRY A L. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Science, 2009, 49: 1955-1968.
[94]   CUTHBERT P A, SOMERS D J, THOMAS J, CLOUTIER S, BRUL?-BABEL A. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 112: 1465-1472.
[95]   CUTHBERT P A, SOMERS D J, BRUL?-BABEL A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114: 429-437.
[96]   QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117: 1155-1166.
[97]   XUE S, LI G Q, JIA H Y, XU F, LIN F, TANG M Z, WANG Y, AN X, XU H B, ZHANG L X, KONG Z X, MA Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2010, 121: 147-156.
[98]   XUE S, XU F, TANG M, ZHOU Y, LI G, AN X, LIN F, XU H, JIA H, ZHANG L, KONG Z, MA Z. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123: 1055-1063.
[99]   GUO J, ZHANG X, HOU Y, CAI J, SHEN X, ZHOU T, XU H, OHM H W, WANG H, LI A, HAN F, WANG H, KONG L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker- assisted selection. Theoretical and Applied Genetics, 2015, 128: 2301-2316.
[100] HOREVAJ P, BROWN-GUEDIRA G, MILUS E A. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathology, 2012, 61: 925-933.
[101]程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 5: 938-942.
CHEN S H, ZHANG Y, BIE T D, GAO D R, ZHANG B Q. Damage of wheat Fusarium head blight epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2012, 5: 938-942. (in Chinese)
[102]马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 1: 197-203.
MA H X, LU W Z. Progress on genetic improvement for Fusarium head blight in wheat. Jiangsu Journal of Agricultural Sciences, 2010, 1: 197-203. (in Chinese)
[103] PESTKA J J, SMOLINSKI A T. Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health-part B, 2005, 8: 39-69.
[104] KUSHIRO M. Effects of milling and cooking processes on the deoxynivalenol content in wheat. International Journal of Molecular Sciences, 2008, 9: 2127-2145.
[105] ZHANG H, WANG B. Fate of deoxynivalenol and deoxynivalenol- 3-glucoside during wheat milling and Chinese steamed bread processing. Food Control, 2014, 44: 86-91.
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[3] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[4] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[5] ZHU Hong , LIANG KeHong , XU HaiQuan , QIU Ju , GUO YanZhi , HUANG JiaZhang , ZHU DaZhou , SUN JunMao . Review and Suggestion for Nutrition Standard of Agricultural Products in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3145-3154.
[6] ZHANG ChunLong, Channarong PHONGSAI, ZHANG JiangLi, YUYang, SU YaoHua, YANG Mi, GAO Liang, PU ShiHuang, LI Juan, JIN ShouLin, TAN XueLin, WEN JianCheng. Evaluation of Rice Germplasms for Grain Resistant Starch Content and Its Environmental Stability [J]. Scientia Agricultura Sinica, 2019, 52(17): 2921-2928.
[7] YANG YanHui,MA Xiao,ZHANG ZiShan,GUO Jun,LI YueNan,LIANG Ying,SONG JianMin,ZHAO ShiJie. Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents [J]. Scientia Agricultura Sinica, 2018, 51(22): 4241-4251.
[8] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[9] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[10] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[11] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[12] LIU XinLun, WANG Chao, NIU LiHua, LIU ZhiLi, ZHANG LuDe, CHEN ChunHuan, ZHANG RongQi, ZHANG Hong, WANG ChangYou, WANG YaJuan, TIAN ZengRong, JI WanQuan. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid [J]. Scientia Agricultura Sinica, 2017, 50(20): 3908-3917.
[13] WANG Kun-yang, ZHANG Wei, ZHANG Shuang-xi, LIU Hong-wei, WANG Ke, DU Li-pu, LIN Zhi-shan, YE Xing-guo. Effect of Chemical Hybridization Agent SQ-1 and Arabinogalactan Proteins on the Embryos Obtaining in Wheat Intervarietal and Wild Crosses [J]. Scientia Agricultura Sinica, 2016, 49(24): 4824-4832.
[14] HU Xue-xu, SUN Li-juan, ZHOU Gui-ying, WU Li-na, LU Wei, LI Wei-xi, WANG Shuang, YANG Xiu-lan, SONG Jing-ke, WANG Bu-jun. Variations of Wheat Quality in China From 2006 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(16): 3063-3072.
[15] XIONG Shu-ping, WU Ke-yuan, WANG Xiao-chun, ZHANG Jie, DU Pan, WU Yi-xin, MA Xin-ming. Analysis of Root Absorption Characteristics and Nitrogen Utilization of Wheat Genotypes with Different N Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!