Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3831-3844.doi: 10.3864/j.issn.0578-1752.2016.19.014

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Effect of Fermentation on the Polysaccharides Processing Characteristics in Apple Pomace

JIA Feng, GUO Yu-rong, LIU Dong, YANG Xi, DENG Hong, MENG Yong-hong   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2016-03-22 Online:2016-10-01 Published:2016-10-01

Abstract: 【Objective】The output of apple in China accounts for over 50% of the world annually. Among those apples, there are about 20% of apple fruits are used as raw materials to produce deep-processed products. As a result, apple pomace of thousands of tons are produced each year, which has caused the tremendous waste of apple recourse because these pomace are generally sold as a cheap fertilizer or are discarded directly as junks. The difference of physical and rheological property, viscosity-average molecular weight, and basic structure of polysaccharides between raw pomace and fermented apple pomace was studied in order to provide innovative thoughts and a theoretical basis for the exploitation of apple polysaccharides.【Method】Apple pomace (AP), wine fermented apple pomace polysaccharides (WFP), vinegar fermented apple pomace polysaccharides (VFP) were used as experimental materials, the paper investigated overall the processing properties of polysaccharides in fermented apple pomace through comparing with the extract ratio, solubility, hygroscopicity, moisture retention, and emulsifiability, foaming capacity and stability among AP, WFP and VFP. Besides, the rheological properties, microstructure, viscosity-average molecular weight were determined by using rheometer, desktop scanning electron microscope (DSEM), ubbelohde viscometer, respectively.【Result】The extraction ratio of AP was 5.68%, while that of polysaccharide in fermented apple pomace was 6%-7%, both of which had a significant difference (P<0.05). The solubility of VFP and WFP were, respectively, 0.1405 g·mL-1 and 0.0771 g·mL-1, and significantly higher (P<0.05) than AP (0.0283 g·mL-1). Compared to AP, the stability of foaming, hygroscopicity, moistureretention of polysaccharides, fermented apple pomace were significantly increased (P<0.05), while oil absorption, emulsifiability and its stability obviously decreased (P<0.05). According to analysis on rheological property, AP, WFP, VFP could be attributed to typical non-Newtonian fluid, and the apparent viscosity showed obvious dependent-characteristic of concentration. Besides, VFP and WFP had great resistance against temperature change. The findings of analysis of viscosity-average molecular weight and DESM indicated that the viscosity-average molecular weight of AP, WFP, VFP all distributed in the range of 15-130 kDa, and AP>WFP>VFP. Additionally, the microstructure analysis showed that AP consisted of band, bar and flake, twining with each other and forming firm network. WFP contained dentation, bar and flake, so its cross-linking was comparatively lower. But VFP mainly consisted of flake, overlapping with one another, and cross-linking was the lowest.【Conclusion】WFP, VFP were greatly improved in physicaland rheological properties, microstructure and viscosity-average molecular weight, indicating the processing property of polysaccharides in fermented apple pomace was superior to AP.

Key words: apple pomace polysaccharide, fermentation, properties, rheology, structure, processing characteristics

[1]    卢新智. 陕西果业连年飘红惊羡世界-苹果产量占全国1/4. 陕西日报, 2015-02-26. http://news.cnwest.com/content/2015-02/26/content 12191005.htm.
Lu Z X. Shaanxi fruit industry in successive wave red admiring world-Apple production accounts for a quarter of the country. ShaanXi Daily, 2015-02-26. http://news.cnwest.com/content/2015-02/ 26/content12191005.htm. (in Chinese)
[2]    刘杰超, 焦中高, 周红平, 王思新. 水果活性多糖的研究现状与展望. 食品科学, 2008, 29(10): 675-679.
Liu J C, Jiao Z G, Zhou H P, WANG S X. Fruit research status and prospect of active polysaccharides. Food Science, 2008, 29(10): 675-679. ( in Chinese)
[3]    李锦运, 郭玉蓉, 董守利, 段亮亮, 仇农学, 牛鹏飞. 冷破碎苹果皮渣中多糖提取工艺优化及除杂方法研究. 食品工业科技, 2011, 32(7): 274-277.
Li J Y, GUO Y R, DONG S L, DUAN L L, QIU N X, NIU P F. Study on optimization of extraction process and deprotein, depigment of polysaccharides from apple cold-break peel pomace. Food Science and Technology, 2011, 32(7): 274-277. (in Chinese)
[4]    李倩, 郭振军, 李宇华, 伍焕杰, 孙阳, 邓雅婷, 张敏, 刘莉. HPLC检测肠灌流模型中PMP衍生化葡寡糖含量的方法学建立. 现代生物医学进展, 2010, 22(12): 2201-2204.
Li Q, GUO Z J, LI Y H, WU H J, SUN Y, DENG Y T, ZHANG M, LIU L. HPLC detection of intestinal perfusion model PMP derivatized glucosamine oligosaccharide content established methodology. Progress in Modern Biomedicine, 2010, 22(12): 2201-2204. (in Chinese)
[5]    张丽萍, 盛义保, 马惠玲, 左莹. 苹果多糖除杂脱色工艺的筛选. 西北林学院学报, 2007, 22(1): 141-144.
Zhang L P, SHENG Y B, MA H L, ZUO Y. Optimization of extraction process of Malus pumila polysaccharides from apple pomace. Northwest Forestry University, 2007, 22(1): 141-144. (in Chinese)
[6]    苏钰琦, 马惠玲, 罗耀红, 左莹. 苹果多糖提取的优化工艺研究. 食品工业科技, 2008(5): 198-201.
Su Y Q, MA H L, LUO Y H, ZUO Y. Optimization of extraction process of Malus pumila polysaccharides from apple pomace. Journal of Food Industry Science and Technology, 2008(5): 198-201. ( in Chinese)
[7]    马惠玲, 盛义保, 张丽萍. 苹果渣果胶多糖的分离纯化与抗氧化活性研究. 农业工程学报, 2008(S1): 218-222.
Ma H L, Sheng Y B, Zhang L P. The separation and purification of slag apple pectin polysaccharide and antioxidant activity research. Journal of Agricultural Engineering, 2008(S1): 218-222. ( in Chinese)
[8]    马文杰, 郭玉蓉, 魏决. 应用二次回归旋转正交组合设计提取水溶性苹果多糖的工艺研究. 食品科学, 2009, 30(20): 105-108.
Ma W J, GUO Y R, WEI J. Optimization of water-soluble apple polysaccharides extraction using quadratic orthogonal rotation combination design. Food Science, 2009, 30(20): 105-108. (in Chinese)
[9]    耿乙文, 哈益明, 靳婧, 李庆鹏. 过氧化氢改性苹果渣膳食纤维的研究. 中国农业科学, 2015, 48(19): 3979-3988.
Geng Y W, HA Y M, Jin J, Li Q P. Apple pomace dietary fibre modification by hydrogen peroxide. Scientia Agricultura Sinica, 2015, 48(19): 3979-3988. (in Chinese)
[10]   尤毅娜, 邓红, 孟永宏, 房杰, 郭玉蓉, 张英. 碱性双氧水预处理对苹果渣化学组分和酶解得率的影响. 中国农业科学, 2016, 49(8): 1559-1566.
You Y N, Deng H, Meng Y H, FANG J, Guo Y R, Zhang Y. The impact of alkaline hydrogen peroxide pretreatment on the chemical composition and enzymatic hydrolyzability of apple pomace. Scientia Agricultura Sinica, 2016, 49(8): 1559 -1566. (in Chinese)
[11]   李洁, 郭玉蓉, 窦姣. 四种方法提取苹果肉渣果胶的流变学特性研究. 食品工业科技, 2015, 36(12): 109-112.
Li J, GUO Y R, DOU J. Rheological properties of apple flesh pomace pectins extracted by four methods. Journal of Food Industry Science and Technology, 2015, 36(12): 109-112. (in Chinese)
[12]   毛英丽. 葡萄多糖的提取纯化及物性、抗氧化性研究[D]. 乌鲁木齐: 新疆农业大学, 2008.
Mao Y L. Grapes polysaccharide extraction and purification, and physical properties, oxidation resistance research [D]. Urumchi: Xinjiang Agricultural University, 2008. ( in Chinese)
[13]   Lohani U C, Muthukumarappan K. Application of pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innovative Food Science & Emerging Technologies, 2016, 35: 29-35. doi: 10.1016/j.ifset.2016.03.012
[14]   Madrera R R, Bedriñana R P, Valles B S. Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT - Food Science and Technology, 2015, 64(2): 1342-1353.
[15]   Evcan E, Tari C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy, 2015, 88: 775-782.
[16]   Macagnan F T, Santos L R D, Roberto B S, DE MOURA F A, BIZZANI M, DA SILVA L P. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 2015, 6(1): 1-6.
[17]   苏浩, 余以刚, 杨海燕. 膜分离技术在水溶性大豆多糖提取中的应用. 食品工业科技, 2009(8): 216-217.
Su H, YU Y G, YANG H Y. Application of membrane separation technology in water-soluble soybean polysaccharide extraction. Journal of Food Industry Science and Technology, 2009(8): 216-217 . (in Chinese)
[18]   梁涛, 张静, 张力妮, 张化朋, 张鹏, 刘阿娟. 碱提杏鲍菇多糖PEAP-1的结构初探及形貌观察. 食品与生物技术学报, 2013, 32(9): 951-956.
Liang T, ZHANG J, ZHANG L N, ZHANG H P, LIU A J. Preliminary structure analysis and structure morphology observation of alkali-extractable polysaccharide PEAP-1 from Pleurotus eryngii. Journal of Food and Biological Technology, 2013, 32(9): 951-956. (in Chinese)
[19]   Line E M, Aline V, Jean P A. Screening of antioxidant activities of polysaccharides extracts from endemic plants in Gabon. Bioactive Carbohydrates and Dietary Fiber, 2014, 3: 77-88.
[20]   Xu J G, Tian C R, Hu Q P, LUO J Y, WANG X D. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. Journal of Agricultural and Food Chemistry, 2009, 57: 10392-10398.
[21]   Liu Y, Du Y Q, Wang J H, ZHA A Q, ZHANG J B. Structural analysis and antioxidant activities of polysaccharide isolated from Jinqian mushroom. International Journal of Biological Macromolecules, 2014, 64: 63-68.
[22]   红外光谱. 360百科[EB/OL], [2016-09-07]http://baike.so.com/doc/ 725530-768121. html
Infrared spectrum, 360 BAIKE [EB/OL].[2016-09-07]http://baike. so.com/doc/725530-768121.html. (in Chinese)
[23]   Zheng W, Zhao T, Feng W W, WANG W, ZOU Y, ZHENG D H, TAKASE M, LI Q, WU H Y, YANG L Q, WU X Y. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus. Carbohydrate Polymers, 2014, 106: 335-342.
[24]   Ma L P, Qin C L, Wang M C, GAN D, CAO L, YE H, ZENG X X. Preparation, preliminary characterization and inhibitory effect on human colon cancer HT-29 cells of an acidic polysaccharide fraction from Stachys floridana Schuttl. ex Benth. Food and Chemical Toxicology, 2013, 60: 269-276.
[25]   Zhang S, He B, Ge J B, LI H B , LUO X Y, ZHANG H, LI Y H, ZHAI C L, LIU P G, LIU X, FEI X T. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats. International Journal of Biological Macromolecules, 2010, 47: 546-550.
[26]   韩万友, 董桂茹, 屈玉玲, 孟永宏, 郭玉蓉, 邓红. 不同pH下低甲酯苹果果胶凝胶模型建立及基于流变学的凝胶机理分析. 中国农业科学, 2016, 49(13): 2603-2611.
Han W Y, Dong G R, Qu Y L, Meng Y H, Guo Y R, Deng H. Gel Model and mechanism of low-methoxyl apple pectin for various pH. Scientia Agricultura Sinica, 2016, 49(13): 2603-2611. (in Chinese)
[27]   刘爱峰, 宋建民, 赵振东, 吴祥云, 李豪圣, 刘广田. 糯小麦配粉对面团流变学特性和面包烘烤品质的影响. 中国农业科学, 2004, 37(6): 902-907.
LIU A F, SONG J M, ZHAO Z D, WU X Y, LI H S, LIU G T. Effects of waxy flour blending on dough rheological properties and bread making quality of nonwaxy flour. Scientia Agricultura Sinica, 2004, 37(6): 902-907. (in Chinese)
[28]   胡秋辉, 高永欣, 杨文建, 方勇, 马宁, 袁彪, 赵立艳. 混合实验仪评价香菇粉对面团流变特性的影响. 中国农业科学, 2013, 46(10): 2159-2167.
Hu Q H, GAO Y X, YANG W J, FANG Y, MA N, YUAN B, ZHAO L Y. Evaluation of the effect of Lentinus edodes powder on dough rheological properties with mixolab. Scientia Agricultura Sinica, 2013, 46(10): 2159-2167. (in Chinese)
[29]   田玉霞, 乔书涛, 仇农学. 不同分子量级苹果果胶的流变性评价. 陕西师范大学学报(自然科学版), 2010, 38(1): 104-108.
Tian Y X, QIAO S T, QIU N X. The rheological properties of different molecular level apple pectin evaluation. Journal of Shaanxi Normal University (Natural Science Edition), 2010, 38(1): 104-108. (in Chinese)
[30]   张化朋, 张静, 南征. 杏鲍菇多糖WPP2的结构表征及抗肿瘤活性. 高等学校化学学报, 2013, 34(10): 2327-2333.
Zhang H P, ZHANG J, NAN Z. Structure characterization and antitumor activity of polysaccharide WPP2 from Pleurotus eryngii. Journal of High School Chemistry, 2013, 34(10): 2327-2333. (in Chinese)
[31]   Gan Z, Ellis P R, Schofield J D. Mini review: Gas cell stabilisation and gas retention in wheat bread dough. Journal of Cereal Science, 1995, 21: 215-230.
[32]   Jelaca S L, Hlynca I. Effect of wheat flour pentosans in dough, gluten and bread. Cereal Chemistry, 1972, 49: 489-495.
[33]   Hosenev R C. Functional properties of pentosans in baked foods. Food Technology, 1984, 38: 114-117.
[34]   Biliaderis C G, Lzydorczvyk M S, Rattan O. Effect of arabinoixylans on bread making quality of wheat flours. Food Chemistry, 1995, 5: 165-171.
[35]   王璋, 汤坚, 许时婴. 食品化学. 第二版. 北京: 中国轻工业出版社, 2001.
Wang Z, TANG J, XU S Y. Food Chemistry. 2nd ed. Beijing: China Light Industry Press, 2001. (in Chinese)
[36]   肖连冬, 程爽, 李杰. 大豆分离蛋白起泡性和乳化性影响因素的研究. 中国酿造, 2014, 33(4): 83-86.
Xiao L D, CHENG S, LI J. Soy protein isolate the influence factor of foamability and emulsibility study. China Brewing, 2014, 33(4): 83-86. (in Chinese)
[37]   何希强, 肖怀秋, 王穗萍. 豌豆蛋白质起泡性与乳化性研究初探. 粮油食品科技, 2008, 16(3): 50-52.
He X Q, XIAO H Q, WANG S P. Pea protein foamability and emulsibility research study. Journal of Grain and Oil Food Science and Technology, 2008, 16(3): 50-52. (in Chinese)
[38]   李雷, 汪东风, 周小玲. 茶叶多糖食品功能性研究. 茶叶科学, 2006, 26(2): 102-107.
LI L, WANG D F, ZHOU X L.The tea polysaccharide food functional research. Journal of Tea Science, 2006, 26(2): 102-107. (in Chinese)
[39]   Williams P A, Sayers C, Viebke C. Elucidation of the emulsification properties of sugar beet pectin. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3592-3597.
[40]   梁瑞红, 黄钰, 毕双同. 剪切处理对薜荔籽果胶流变性质的影响研究. 食品研究与开发, 2008, 29(10): 39-42.
LIANG R H, HUANG Y, BI S T. Complete with double, and other studies on the impact shearing Ficus pumila seed pectin rheological properties. Food Research and Development, 2008, 29(10): 39-42. (in Chinese)
[41]   刘颖, 梁盈, 林亲录. 南瓜多糖的提取及其抗氧化活性研究进展. 食品与机械, 2014(3): 239-243.
Liu Y, LIANG Y, LIN Q L. The extraction of pumpkin polysaccharide and its antioxidant activity research progress. Journal of Food and Machinery, 2014(3): 239-243. (in Chinese)
[42]   刘姚, 欧阳克蕙, 葛霞. 植物多糖生物活性研究进展. 江苏农业科学, 2013, 41(1): 1-4.
Liu Y, OUYANG K H, GE X. The plant polysaccharide bioactivity research progress. Journal of Jiangsu Agricultural Science, 2013, 41(1): 1-4. (in Chinese)
[43]   马青, 商鸿生. 小麦高温抗锈品种与条锈菌互作的超微结构研究. 中国农业科学, 2002, 35(8): 939-942.
MA Q, SHANG H S. Ultrastructural changes concerning interact ion of rust-resistant wheat cultivars in high-temperature with stripe rust. Scientia Agricultura Sinica, 2002, 35(8): 939-942. (in Chinese)
[44]   陈见晖, 周卫. 苹果缺钙对果实钙组分、亚细胞分布与超微结构的影响. 中国农业科学, 2004, 37(4): 572-576.
CHEN J H, ZHOU W. Effect of calcium deficiency in apple (Malus pumila) fruits on calcium fractions, subcelluar distribution and ultrastructure of pulp cells. Scientia Agricultura Sinica, 2004, 37(4): 572-576. (in Chinese)
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[3] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[4] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[5] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[6] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[7] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[8] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[9] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[10] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[11] NUERHATI·Silafuer ,WUSIMAN·Yimiti . Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage [J]. Scientia Agricultura Sinica, 2022, 55(20): 4065-4074.
[12] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[13] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[14] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[15] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!