Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (11): 2049-2062.doi: 10.3864/j.issn.0578-1752.2016.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Genetic Diversity and Structure of Tartary Buckwheat Resources from Production Regions

QU Yang1,2, ZHOU Yu1, WANG Zhao2, WANG Peng-ke1, GAO Jin-feng1, GAO Xiao-li1, FENG Bai-li1   

  1. 1 College of Agronomy, Northwest A & F University /State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
    2 Baoji Institute of Agricultural Science, Qishan 722400, Shaanxi
  • Received:2016-01-06 Online:2016-06-01 Published:2016-06-01

Abstract: 【Objective】 The objective of this study was to understand the genetic diversity and population structure of tartary buckwheat resources from different production regions and to provide theoretical foundation of functional gene and resources use. 【Method】 Eight phenotypic traits were evaluated by correlation and principal component analyses. Plants were cultivated in the greenhouse, and 10 fresh leaves were selected in the three leaf stage. DNA of tartary buckwheat was extracted using the CTAB method, and then they were amplified based on the SSR marker, detected by the electrophoresis, and took photos and saved. 0, 1 matrix was structured based on the detection of SSR, and eighty-three materials were used to analyze genetic diversity and genetic structure by PowerMarker3.25 and Structure2.3.4 software. 【Result】 Distribution of the eight phenotypic traits were scattered with most apparently interrelated. The cumulative contribution rate of four principal components formerly reached up to 85.2%, which may show the relative relationships of the plant traits. The variation coefficient and genetic diversity of plant height and main stem diameter contributed the most to this metrics between all plant traits. Among the distinct geographical regions, the mean H′ (1.82) of Tibet population was the richest, and in Sichuan population was the second with a mean H′ of 1.78, just slightly lower. Genetic diversity of plant traits from the distinct regions showed that the H′ of growth stage, plant height, and main stem branch number in Sichuan population were the highest, while the H′ of leaf width was the richest trait in the Shaanxi population, andof 1000-seeds weight H′ in Yunnan population was the richest trait for plants of that region. Principal component analysis of 7 different geographical populations showed plant traits of similar production regions may have a close relation. Genetic diversity of 83 individuals of tartary buckwheat germplasm resources was detected by 13 pairs of SSR primes. A total of 208 loci were detected, among which 200 (96.2%) were polymorphous. The number of amplified fragments and polymorphous fragments per primer combination were 16 and 15.4; the number of alleles varied from 4 to 58, and the frequencies of major alleles varied from 0.02 to 0.86; gene diversity was between 0.38 and 0.98, and polymorphic information index was 0.35-0.98. Genetic diversity of different production regions showed that genetic structure of the northerly populations showed close relationship, and genetic structure of southwesterly population was also so, which showed the relationship between population cluster and production regions. The number of alleles (12.1), genetic diversity index (0.84), and polymorphic information content (0.83) in Shaanxi were the highest among the regions. All resources were divided into three clusters based on modules by genetic structure analysis, and cluster analysis based on genetic distance showed dispersive resources and no regionalization. Genetic distances were close from plant materials of the same production regions among different resources. 【Conclusion】 Polymorphic information contents of tartary buckwheat from main production regions were high, and the genetic diversity among them was rich. Resource interflow and genetic material exchange were observed in northerly and southwesterly production regions.

Key words: tartary buckwheat, genetic diversity, genetic structure, principal component analysis (PCA), correlation analysis, clustering analysis

[1]    柴岩, 林汝法, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002: 213-216.
Chai Y, Lin R F, Liao Q. Minor grain crops in China. Beijing: Agricultural Science and Technology Press, 2002: 213-216. (in Chinese)
[2]    赵丽娟, 张宗文, 黎裕. 苦荞种质资源遗传多样性的ISSR分析. 植物遗传资源学报, 2006, 7(2): 159-164.
Zhao L J, Zhang Z W, Li Y. Genetic diversity in tartary buckwheat based on ISSR markers. Journal of Plant Genetic Resources, 2006, 7(2): 159-164. (in Chinese)
[3]    Ikeda S, Tomura K, Myya M, Kreff I. Buckwheat minerals and their nutrirional role//Proceeding of the 9th International Symposium on Buckwheat, 2004: 650-652.
[4]    刘淑梅, 韩淑英, 张宝忠. 荞麦种子总黄酮对糖尿病高脂血症大鼠血脂、血糖及脂质过氧化的影响. 中成药, 2003(8): 662-663.
Liu S M, Han S Y, Zhang B Z. The effect of buckwheat seeds flavonoid on diabetes and hyperlipaemia in rat. Chinese Traditional Patent Medicine, 2003(8): 662-663. (in Chinese)
[5]    李洁, 梁月琴, 郝一彬. 苦荞麦黄酮降血脂作用的实验研究. 山西医科大学报, 2004, 35(6): 570-571.
Li J, Liang Y Q, Hao Y B. Lowering bloodlipid effet of flavonoids of tartary buckwheat. Journal of Shanxi Medical University, 2004, 35(6): 570-571. (in Chinese)
[6]    贾瑞玲, 马宁, 魏立平. 50份苦荞种质资源农艺性状的遗传多样性分析. 干旱地区农业研究, 2015, 5(33): 11-16.
Jia R L, Ma N, Wei L P. Genetic diversity analysis on the agronomic characteristics of 50 tartary buckwheat germplasms. Agricultural Research in the Arid Areas, 2015, 5(33): 11-16. (in Chinese)
[7]    李瑞国, 高冬丽, 柴岩. 苦荞资源农艺性状因子聚类分析. 干旱地区农业研究, 2007, 25(6): 80-84.
Li R G, Gao D L, Chai Y. Factor and cluster analysis of Tartary buckwheat resources. Agricultural Research in the Arid Areas, 2007, 25(6): 80-84. (in Chinese)
[8]    高金锋, 张慧成, 高小丽. 西藏苦荞种质资源主要农艺性状分析. 河北农业大学学报, 2008, 31(2): 1-5.
Gao J F, Zhang H C, Gao X L. Analysis on the agronomic traits of tartary buckwheat in Tibet. Journal of Agricultural University of Hebei, 2008, 31(2): 1-5. (in Chinese)
[9]    李春花, 卢文杰, 王艳青, 王莉花. 云南苦荞资源农艺性状的主成分和聚类分析. 江西农业大学学报, 2015, 37(4): 612-617.
Li C H, Lu W J, Wang Y Q, Wang L H. The principal componenets and cluster analysis of F. tataricum resources in Yunnan. Acta Agricultural Universitatis Jiangxieensis, 2015, 37(4): 612-617. (in Chinese)
[10]   董俊丽, 王海岗, 陈凌, 乔治军. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48(16): 3121-3131.
Dong J L, Wang H G, Chen L, Qiao Z J. Analysis of genetic diversity and structure of proso millet core germplasm. Scientia Agricultura Sinica, 2015, 48(16): 3121-3131. (in Chinese)
[11]   黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民. 中国作物分子育种现状与发展前景. 作物学报, 2010, 36(9): 1425-1430.
Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China: Current status and perspectives. Acta Agronomica Sinica, 2010, 36(9): 1425-1430. (in Chinese)
[12]   王莉花, 殷富有, 刘继梅. 利用RAPD 分析云南野生荞麦资源的多样性和亲缘关系. 分子植物育种, 2004, 2(6): 807-815.
Wang L H, Yin F Y, Liu J M. Genetic diversity and relationships of the wild buckwheat resources from Yunnan Province revealed by RAPD. Molecular Plant Breeding, 2004, 2(6): 807-815. (in Chinese)
[13]   候雅君, 张宗文, 吴斌. 苦荞种质资源AFLP标记遗传多样性分析. 中国农业科学, 2009, 42(12): 4166-4174.
Hou Y J, Zhang Z W, Wu B. Genetic diversity in tartary buckwheat revealed by AFLP analysis. Scientia Agricultura Sinica, 2009, 42(12): 4166-4174. (in Chinese)
[14]   Tsuji K, Ohnishi O. Origin of cultivated tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 2000, 47: 431-438.
[15]   Bojka K, Branka J. Genetic diversity and ralationships among cultivated and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) as revealed by RAPD markers. Genetic Resources and Crop Evolution, 2002, 49: 565-572.
[16]   陈雪燕, 工亚娟, 雒景吾, 吉万全. 陕西省小麦地方品种主要性状的遗传多样性研究. 麦类作物学报, 2007, 27(3): 456-460.
Chen X Y, Gong Y J, Luo J W, Ji W Q. Genetic diversity in main characters of wheat landraces in Shaanxi province. Journal of Triticeae Crops, 2007, 27(3): 456-460. (in Chinese)
[17]   彭锁堂, 王海岗, 魏兴华, 吕建珍, 张晓丽, 袁筱萍, 杨武德. 我国三系杂交稻主要不育系的微卫星标记多样性和遗传结构分析. 中国水稻科学, 2008, 22(4): 365-369.
Peng S T, Wang H G, Wei X H, Lü J Z, Zhang X L, Yuan X P, Yang W D. SSR diversity and genetics structure of main male sterile lines of three line hybrid rice in China. Chinese Rice Sciences, 2008, 22(4): 365-369. (in Chinese)
[18]   王果, 胡正, 张保缺, 王成社, 张辉. 山西省野生大豆资源遗传多样性分析. 中国农业科学, 2008, 41(7): 2182-2190.
Wang G, Hu Z, Zhang B Q, Wang C S, Zhang H. Genetic diversity analysis of Shanxi’s wild soybean (Glycine soja). Scientia Agricultura Sinica, 2008, 41(7): 2182-2190. (in Chinese)
[19]   韩瑞霞, 张宗文, 吴斌. 苦荞SSR引物开发及其在遗传多样性分析中的应用. 植物遗传资源学报, 2012, 13(5): 759-764.
Han R X, Zhang Z W, Wu B. Development of SSR markers and application in analysis of genetic diversity in tartary buckwheat (Fagopyrum tataricum). Journal of Plant Genetic Resources, 2012, 13(5): 759-764. (in Chinese)
[20]   Iwata H, Imon K, Tsumura Y, Ohsawa R. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphismand simple sequence repeat markers and quantitative agronomic traits. Genome, 2005, 48(3): 367-377.
[21]   莫日更朝格图, 王鹏科, 高金峰, 柴岩. 苦荞地方种质资源的遗传多样性分析. 西北植物学报, 2010, 30(2): 225-261.
Morigengchaogetu, Wang P K, Gao J F, Chai Y. Genetic diversity of tartary buckwheat germplasms. Acta Botanica Boreali-occidentalia Sinica, 2010, 30(2): 225-261. (in Chinese)
[22]   高帆, 张宗文, 吴斌. 中国苦荞SSR分子标记体系构建及其在遗传多样性分析中的应用. 中国农业科学, 2012, 45(6): 1042-1053.
Gao F, Zhang Z W, Wu B. Construction and application of SSR molecular markers system for genetic diversity analysis of chinese tartary buckwheat germplasm resources. Scientia Agricultura Sinica, 2012, 45(6): 1042-1053. (in Chinese)
[23]   杨学文, 丁素荣, 胡陶. 104份苦荞种质的遗传多样性分析. 作物杂志, 2013(6): 13-17.
Yang X W, Ding S R, Hu T. Genetic diversity of 104 tartary buckwheat accessions. Crops, 2013(6): 13-17. (in Chinese)
[24]   徐笑宇, 方正武, 杨璞, 冯佰利. 苦荞遗传多样性分析与核心种质筛选. 干旱地区农业研究, 2015, 1(33): 268-277.
Xu X Y, Fang Z W, Yang P, Feng B L. Genetic diversity analysis of tartary buckwheat and selection of core collections. Agricultural Research in the Arid Areas, 2015, 1(33): 268-277. (in Chinese)
[25]   徐笑宇, 方正武, 杨璞, 冯佰利. 高黄酮荞麦资源的遗传多样性分析. 西北农业学报, 2015, 24(3): 88-95.
Xu X Y, Fang Z W, Yang P, Feng B L. Evaluation of genetic diversity of buckwheat resources with superior flavonoids. Acta agriculturae Boreali-occidentalis Sinica, 2015, 24(3): 88-95. (in Chinese)
[26]   张宗文, 林汝法. 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007: 17-29.
Zhang Z W, Lin R F. Buckwheat (Fagopyrum esculentum Moench.) Germplasm Description Specifications and Standards. Beijing: China Agricultural Press, 2007: 17-29. (in Chinese)
[27]   Konishi T, Iwata H, Yasui Y. Development of microsatellite markers for common buckwheat//Proceeding of the 9th International Symposium on Buckwheat, 2004: 212-218.
[28]   Shi T L. Development of microsatellite markers from tartary buckwheat. Biotechnology Letters, 2007, 29: 823-827.
[29]   胡标林, 万勇, 李霞, 雷建国. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38(5): 829-839.
Hu B L, Wan Y, Li X, Lei J G. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese)
[30]   胡志昂, 王洪新. 研究遗传多样性的基本原理和方法. 北京: 中国科学技术出版社, 1994: 117-122.
Hu Z A, Wang H X. The Basic Principles and Methods of Genetic Diversity. Beijing: China Science and Technology Press, 1994: 117-122. (in Chinese)
[31]   Chun F W, Guan Q J, Hui Z, Niu Z Y, Chai Y, Wang Y F, Li H Q, Zhao B H, Diao X M. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) beauv.]     landraces. Genes Genomes Genetics, 2012(2): 769-777.
[32]   Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[33]   Prichard J K, Stepphen M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
[34]   Cao Q J, Lu B R, Xia H, Rong J, Sala F, Spada A, Grassi F. Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in north-eastern China revealed by simple sequence repeat (SSR) markers. Annals of Botany, 2006, 98: 1241-1252.
[35]   王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42(1): 19-30.
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinca, 2016, 42(1): 19-30. (in Chinese)
[36]   Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 2009, 103: 1557-1566.
[37]   张志祥, 刘鹏, 康华靖, 廖承川. 基于主成分分析和聚类分析的FTIR不同地理居群香果树多样性分化研究. 光谱学与光谱分析, 2008, 28(9): 2081-2086.
Zhang Z X, Liu P, Kang H J, Liao C C. A study of the diversity of different geographical populations of Emmenopterys Henryi using FTIR based on principal component analysis and cluster analysis. Spectroscopy and Spectral Analysis, 2008, 28(9): 2081-2086. (in Chinese)
[38]   Soleri D, Cleveland D A. Farmer selection and conservation of crop varieties//Goodman R M, ed. Encyclopedia of Plant and Crop Science. New York: Marcel Dekker Incorporated, 2004: 433-438.
[39]   屈洋, 冯佰利, 高金锋, 高小丽. 高产苦荞品种筛选及其在北方种植区生态适应性研究. 干旱地区农业研究, 2011, 29(1): 161-167.
Qu Y, Feng B L, Gao J F, Gao X L. Selection of high yielding tartary buckwheat varieties and analysis of their ecological adaptability in North China. Agricultural Research in the Arid Areas, 2011, 29(1): 161-167. (in Chinese)
[40]   Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 1980, 32: 314-331.
[41]   张晓丽, 郭辉, 王海岗, 吕建珍, 袁筱萍, 彭锁棠, 魏兴华. 中国普通野生稻与栽培稻种SSR多样性比较分析. 作物学报, 2008, 34(4): 591-597.
Zhang X L, Guo H, Wang H G, Lü J Z, Yuan X P, Peng S T, Wei X H. Comparative assessment of SSR allelic diversity in wild and cultivated rice in China. Acta Agronomica Sinca, 2008, 34(4): 591-597. (in Chinese)
[42]   Tsuji K, Ohnishi O. Phylogenetic position of east Tibetan natural populations in Tartary buckwheat (Fagopyrum tataricum Gaert.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 2001, 48: 63-67.
[43]   Yamane K, Ohnishi O. Phylogenetic relationships among natural populations of perennial buckwheat, Fagopyrum cymosum Meisn., revealed by allozyme variation. Genetic Resources and Crop Evolution, 2001, 48: 69-77.
[44]   Sharma T R, Jana S. Random amplified polymorphic DNA (RAPD) variation in Fagopyrum tataricum Gaertn. accessions from China and the Himalayan region. Euphytica, 2002, 127: 327-333.
[45]   Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1965, 19: 395-420.
[46]   乔婷婷, 马春雷, 周炎花, 姚明哲, 刘瑞, 陈雷. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析. 作物学报, 2010, 36(5): 744-753.
Qiao T T, Ma C L, Zhou Y H, Yao M Z, Liu R, Chen L. EST-SSR genetic diversity and population structure of tea landraces and developed cultivars (lines) in Zhejiang Province, China. Acta Agronomica Sinca, 2010, 36(5): 744-753. (in Chinese)
[47]   乔小燕, 乔婷婷, 周炎花, 姚明哲. 基于EST-SSR的广东与广西茶树资源遗传结构和遗传分化比较研究. 中国农业科学, 2011, 44(16): 3297-3311.
Qiao X Y, Qiao T T, Zhou Y H, Yao M Z. Comparative analysis of genetic structure and differentiation of guangdong and guangxi tea germplasms based on EST-SSR markers. Scientia Agricultura Sinica, 2011, 44(16): 3297-3311. (in Chinese)
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[8] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[11] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[12] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[13] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[14] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[15] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!