Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (S): 32-39.doi: 10.3864/j.issn.0578-1752.2015.S.004

Previous Articles     Next Articles

Effects of Interspecific Interactions on Nitrogen Absorption,Nodulation and Nitrogen Fixation in Oat‖Soybean and Oat‖Mung Bean Intercropping Systems

YANG Ya-dong1, FENG Xiao-min1,2, REN Chang-zhong3, HU Yue-gao1, ZHANG Wei-jian2, ZENG Zhao-hai1   

  1. 1 College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
    3 Baicheng Academy of Agricultural Sciences, Baicheng 137000, Jilin
  • Received:2015-09-21 Online:2015-10-20 Published:2015-10-20

Abstract: 【Objective】The objective of this experiment was to study the effects of interspecific interactions on nitrogen absorption, nodulation and nitrogen fixation in oat‖soybean and oat‖mung bean intercropping systems and search a higher nitrogen absorption efficiency oat‖legume system. 【Method】The experiment was conducted to determine the effects of interspecific interactions on nitrogen content, nodulation characteristics and nodule nitrogenase activity of legume in oat‖soybean and oat‖mung bean intercropping systems by seven treatments (oat monoculture, soybean monoculture, mung bean monoculture, oat‖soybean without root barriers, oat‖soybean with root barriers, oat‖mung bean without root barriers and oat‖mung bean with root barriers) with pot experiment at Baicheng Academy of Agricultural Sciences of Jilin Province in 2013 and 2014 oat, soybean and mung bean growing seasons. 【Result】The results indicated that: (1) Nitrogen content increased significantly in stem, leaf and spike (P<0.05), and no significant difference in root (P>0.05) of oat were observed in oat‖soybean and oat‖mung bean systems without root barriers compared with monoculture, respectively; (2) Interestingly, different results of legume nitrogen content were obtained in mung bean and soybean, nitrogen content increased significantly in stem, leaf and bean (P<0.05) of mung bean in oat‖mung bean system, but no significant difference was observed (P>0.05) of soybean in oat‖soybean system compared with monoculture, respectively; (3) There were significant increase, with up to 38.45%, 26.38%, 9.09% in 2013, and 28.57%, 20.16%, 2.23% in 2014, in number of nodules, nodules weight and nodules nitrogenase activity of mung bean (P<0.05) in oat‖mung bean, respectively; but no significant impact found in oat‖soybean system, with up to 26.22%, 28.30% in 2013, and 31.29%, 36.85% in 2014, in number of nodules, nodules weight, respectively; (4) Nitrogen absorption of ground organs in oat had positive correlation, while root had negative correlation with number of nodules, nodules weight and nodules nitrogenase activity in legumes, respectively. 【Conclusion】Our results demonstated that oat‖mung bean had an higher nitrogen absorption efficiency and nitrogen fixation ability, which could provide guidance for oat‖legume production.

Key words: oat, soybean, mung bean, interspecific interactions, nitrogen absorption, nodulation characteristics

[1]    Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: Ⅰ. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 2001, 71(2): 123-137.
[2]    Gao X, Wu M, Xu R N, Wang X R, Pan R Q, Kim H, Liao H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE, 2014, 9(5): 1-9.
[3]    Chapagain T, Riseman A. Intercropping wheat and beans: Effects on agronomic performance and land productivity. Crop Science, 2014, 54(5): 2285-2293.
[4]    Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen E S. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1): 64-71.
[5]    Chapagain T, Riseman A. Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops Research, 2014(166): 18-25.
[6]    Li C J, Li Y Y, Yu C B, Sun J H, Peter Christie P, An M, Zhang F S, Long L L. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China. Plant and Soil, 2011, 342(1/2): 221-231.
[7]    沈其荣, 褚贵新, 曹金留, 曹云, 殷晓燕. 从氮素营养的角度分析旱作水稻与花生间作系统的产量优势. 中国农业科学, 2004, 37(8): 1177-1182.
Shen Q R, Chu G X, Cao J L, Cao Y, Yin X Y. Yield advantage of groundnut intecropped with rice cultivated in aerobic soil from the view point of plant nitrogen nutrition. Scientia Agricultura Sinica, 2004, 37(8): 1177-1182. (in Chinese)
[8]    Li L, Zhang F S, Li X L, Christie P, Sun J H, Yang S C, Tang C X. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystem, 2003, 65(1): 61-71.
[9]    Li C J, Dong Y, Li H G, Shen J B, Zhang F S. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and faba bean (Vicia faba L.). PLoS ONE, 2014, 9(12): 1-17.
[10]   秀洪学, 董玉梅, 毛忠顺, 王勇, 施红珍, 杨进成, 汤东生. 种间互作的生态效应: Ⅰ. 间作对蚕豆结瘤的影响. 南方农业学报, 2012, 43(6): 749-752.
Xiu H X, Dong Y M, Mao Z S, Wang Y, Shi H Z, Yang J C, Tang D S. Ecological effects of interspecific interaction: I. Effects of intercropping on nodulation in faba beans. Journal of Southern Agriculture, 2012, 43(6): 749-752. (in Chinese)
[11]   Banik P, Sharma R C. Yield and resource utilization efficiency in baby corn-legume-intercropping system in the eastern plateau of India. Journal of Sustainable Agriculture, 2009, 33(4): 379-395.
[12]   任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013: 1-3.
Ren C Z, Hu Y G. China Oat. Beijing: China Agriculture Press, 2013: 1-3. (in Chinese)
[13]   Heleniusa J, Jokinen K. Yield advantage and competition in intercropped oats (Avena sativa L.) and faba bean (Vicia faba L.): Application of the hyperbolic yield-density model. Field Crops Research, 1994, 37(2): 85-94.
[14]   Dordas C A, Lithourgidis A S. Growth, yield and nitrogen performance of faba bean intercrops with oat and triticale at varying seeding ratios. Grass and Forage Science, 2011, 66(4): 569-577.
[15]   Mohammadreza G, Fernando G P, Richard M C. Grain yield response of corn, soybean, and oat grown in a strip intercropping system. American Journal of Alternative Agriculture, 1994, 9(4): 171-177.
[16]   Lauk R, Lauk E. Pea-oat intercrops are superior to pea-wheat and pea-barley intercrops. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 2008, 58(2): 139-144.
[17]   Soares R A, Roesch L F W, Zanatta G, de Oliveira Camargo F A, Passaglia L, Maria P. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, 2006, 33(3): 221- 234.
[18]   Anastasia V, Maria D, Eleni V, Io K, Nikolaos A, Georgia L, Panagiotis P, Iordanis C, Panagiotis K. Characterization of nitrogen- fixing bacteria isolated from field-grown barley, oat, and wheat. The Journal of Microbiology, 2011, 49(4): 525-534.
[19]   Willey R W, Reddy M S. A field technique for separating above- and below-ground interactions in intercropping: An experiment with pearl millet/groundnut. Experimental Agriculture, 1981, 17(3): 257-264.
[20]   李文学. 小麦/玉米/蚕豆间作系统中氮、磷吸收利用特点及其环境效应[D]. 北京: 中国农业大学, 2001.
Li W X. Nitrate accumulation in soil and nutrient acquisition by intercropped wheat, maize and faba bean [D]. Beijing: China Agriculture University, 2001. (in Chinese)
[21]   余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. 植物营养与肥料学报, 2009, 15(1): 1-8.
Yu C B, Sun J H, Li L. Effect of interspecific interaction on crop growth and nutrition accumulation. Plant Nutrition and Fertilizer Science, 2009, 15(1): 1-8. (in Chinese)
[22]   Gooding M J, Kasyanova E, Ruske R, Hauggaard-Nielsen H, Jensen E S, Dahlmann C, Fragstein P V, Dibet A, Corre-Hellou G, Crozat Y, Pristeri A, Romeo M, Monti M, Launay M. Intercropping with pulses to concentrate nitrogen and sulphur in wheat. Journal of Agricultural Science, 2007, 145(5): 469-479.
[23]   赵平, 郑毅, 汤利, 鲁耀, 肖靖秀, 董艳. 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响. 中国农业生态学报, 2010, 18(4): 742-747.
Zhao P, Zheng Y, Tang L, Lu Y, Xiao J X, Dong Y. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat. Chinese Journal of Eco-Agriculture, 2010, 18(4): 742-747. (in Chinese)
[24]   周晓舟, 李杨瑞, 杨丽涛. 甘蔗/木薯间作系统中氮素的固定与转移. 热带作物学报, 2012, 33(2): 199-206.
Zhou X Z, Li Y R, Yang L T. Biological nitrogen fixation in sugarcane and nitrogen transfer from sugarcane to cassava in the intercropping system. Chinese Journal of Tropical Crops, 2012, 33(2): 199- 206. (in Chinese)
[25]   Li Y Y, Yu C B, Cheng X, Li C J, Sun J H, Zhang F S, Lambers H, Li L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil, 2009, 323 (1/2): 295-308.
[26]   Santalla M, Amurrio J M, Rodino A P, de Ron A M. Variation in traits affecting nodulation of common bean under intercropping with maize and sole cropping. Euphytica, 2001, 122(2): 243-255.
[27]   李玉英, 孙建好, 李春杰, 李隆, 程序, 张福锁. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响. 中国农业科学, 2009, 42(10): 3467-3474.
Li Y Y, Sun J H, Li C J, Li L, Cheng X, Zhang F S. Effects of interspecific interactions and nitrogen fertilization rates on the agoronmic and nodulation characteristics of intercropped faba bean. Scientia Agricultura Sinica, 2009, 42(10): 3467-3474. (in Chinese)
[28]   刘永秀, 左元梅, 张福锁, 毛达如. 玉米—花生混作对改善花生铁营养及固氮的影响. 土壤通报, 1999, 30(2): 55-56.
Liu Y X, Zuo Y M, Zhang F S, Mao D R. Effect on improving iron nutrition and nitrogen fixation of groundnut in maize/groundnut intercropping system Chinese Journal of Soil Science, 1999, 30(2): 55- 56. (in Chinese)
[29]   郭丽, 张虎天, 何亚慧, 柴强, 黄高宝. 根瘤菌接种对豌豆/玉米间作系统作物生长及氮素营养的影响. 草业学报, 2012, 21(1): 43- 49.
Guo L Z, Zhang H T, He Y H, Chai Q, Huang G B. Effect of rhizobium inoculation on crop growth and nitrogen nutrition of a pea/maize intercropping system. Acta Prataculturae Sinica, 2012, 21(1): 43-49. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[8] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[9] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[10] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[11] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[12] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[14] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!