Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 184-196.doi: 10.3864/j.issn.0578-1752.2022.01.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation

DU Yu1,2(),WANG Yong1,MENG QingYong3,ZHU JiangJiang1,LIN YaQiu1,2()   

  1. 1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041
    2College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041
    3State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193
  • Received:2020-11-10 Accepted:2021-10-31 Online:2022-01-01 Published:2022-01-07
  • Contact: YaQiu LIN E-mail:dy17882230767@163.com;linyq1999@163.com

Abstract:

【Background】Subcutaneous adipose tissue (SAT) under the skin is an important factor affecting the taste of meat. Exploring the molecular regulation mechanisms of SAT deposition is very important for breeding improvement and the development of animal husbandry. Krüppel-like factors 12 (KLF12) is a conserved transcription factor that evolutionarily conserved, and it was found that it could be expressed in a variety of cell types and control a wide range of cellular processes. 【Objective】 This study aimed to obtain the coding sequence (CDS) of goat KLF12 and to explore its molecular characteristics. Moreover, the study also intended to clarify the expression pattern of KLF12 in goat tissues and subcutaneous adipocytes, and to explore the role of KLF12 in goat subcutaneous preadipocytes differentiation via interference KLF12, so as to provide a theoretical basis for further research on the potential role of KLF12 in the process of fat deposition. 【Method】 In this study, the goat KLF12 CDS sequence was cloned by Reverse Transcription PCR ( RT-PCR) method, and the nucleotide sequence and amino acid sequence of goat KLF12 were analyzed on online bioinformatics analysis software. The Quantitative Real-time PCR (qRT-PCR) technology was used to detect the expression levels of KLF12 in goat heart, liver, abdominal fat, subcutaneous fat, triceps brachii, longissimus dorsi and other 14 tissues. Furthermore, the expression level of KLF12 in subcutaneous preadipocytes in different differentiation periods was investigated. Then, the goat KLF12 small interfering RNA (si-KLF12) was chemically synthesized and transfected into goat subcutaneous preadipocyte in vitro by using Lipofectamine RNAiMAX transfection reagent. Subsequently, 100 µmol·L-1 oleic acid induced adipocyte differentiation. Oil red O and Bodipy staining methods and qRT-PCR techniques were used to clarify the effects of interference KLF12 on the accumulation of lipid droplets in subcutaneous preadipocytes and the mRNA expression levels of adipose differentiation marker genes from the perspectives of morphology and molecular biology. 【Result】 The goat KLF12 (1 315 bp) were successfully obtained, which contained an Open Reading Frame (ORF) (1 209 bp) and encoded 402 amino acids. The subcellular localization results showed that KLF12 was mainly located in the nucleus. In addition, KLF12 had no transmembrane domain and signal peptide but 3 typical zinc finger domains (ZnF_C2H2) at amino acids 317-341, 347-371 and 377-399. Tissue expression profile showed that the expression level of KLF12 in goats’ heart and spleen were significantly higher than that in other tissues (P<0.01). Moreover, during subcutaneous preadipocytes differentiation, the expression level of KLF12 was peaked at 60 h. After transfection of si-KLF12 into goat subcutaneous preadipocytes, the results of oil red O and Bodipy saining showed that accumulation of lipid droplets in adipocytes were significantly increased. At the same time, the results of qRT-PCR showed that the expression levels of key adipogenic regulatory genes like lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor γ (PPARγ) were significantly increased (P<0.05), while the expression level of preadipocyte growth factor (Pref-1) was extremely significantly reduced (P<0.01). Combined with the morphological observation results and the changes in the expression levels of key adipogenic regulatory genes, it was speculated that KLF12 played a negative regulatory role in the differentiation of subcutaneous adipocytes. 【Conclusion】 By investigating the basic molecular biological characteristics and its expression pattern between tissues and cells of goat KLF12 and analyzing the potential regulatory effects of KLF12 on differentiation process of goat subcutaneous adipocytes, the results suggested that KLF12 played a negative role in goats subcutaneous preadipocytes differentiation, and this effect achieved by regulating LPL, PPARγ and Pref-1, which laid a foundation for further exploring the molecular mechanism of KLF12 in regulating the differentiation of adipocytes.

Key words: goat, KLF12, molecular characteristics, knockdown, subcutaneous adipocytes

Table 1

The information of primers"

名称
Name
引物序列5°至3°
Primer Sequence
退火温度
Tm (℃)
产物长度
Products length (bp)
用途
Purpose
登录号
miRbase ID
KLF12 S: TTAGCGCATCATGTGATCCG
A: TGGGGTGCCGCTAAGAGAT
58 1315 RT-PCR XM_005687692.2
KLF12 S: TCTAAGGTCACATTTGGCAGGTC
A: CCAATCGGTGCCTGTTGTCTAC
61 183 qRT-PCR KX247669.1
UXT S: GCAAGTGGATTTGGGCTGTAAC
A: ATGGAGTCCTTGGTGAGGTTGT
60 180 qRT-PCR XP_005700899.1

Table 2

The information of primers"

名称
Name
引物序列5°至3°
Primer sequence
退火温度
Tm (℃)
产物长度
Products length (bp)
用途
Purpose
登录号
miRbase ID
si-KLF12 UGGACAAGUCCACUGGCUCAGUUUG siRNA
Negative Control S: UUCUCCGAACGUGUCACGUTT
A: ACGUGACACGUUCGGAGAATT
RNAi
LPL S: TCCTGGAGTGACGGAATCTGT
A: GACAGCCAGTCCACCACGAT
60 174 qPCR NM_001285607.1
PPARγ S: AAGCGTCAGGGTTCCACTATG
A: GAACCTGATGGCGTTATGAGAC
60 197 qPCR NM_001285658.1
AP2 S: TGAAGTCACTCCAGATGACAGG
A: TGACACATTCCAGCACCAGC
58 143 qPCR NM_001285623.1
C/EBPβ S: CAAGAAGACGGTGGACAAGC
A: AACAAGTTCCGCAGGGTG
66 204 qPCR XM_018058020.1
Pref1 S: CCGGCTTCATGGATAAGACCT
A: GCCTCGCACTTGTTGAGGAA
65 178 qPCR KP686197.1
SREBP1 S: AAGTGGTGGGCCTCTCTGA
A: GCAGGGGTTTCTCGGACT
58 127 qPCR NM_001285755.1
UXT S: GCAAGTGGATTTGGGCTGTAAC
A: ATGGAGTCCTTGGTGAGGTTGT
60 180 qPCR XP_005700899.1

Fig. 1

Amplification products of g oat KLF12 CDS"

Fig. 2

The sequences of goat KLF12 CDS and prediction of conserved domain A: The nucleotide sequence and the amino acid sequence of goat KLF12. Phosphorylation sites are indicated by black triangles. Domain is showed in shade of gray and Box indicates ZnF_C2H2 area. The start codon ATG and stop codon TGA are boxed, respectively. The amplification primers were marked with red underline. B: Prediction of goat KLF12 domain"

Fig. 3

Biological function prediction of goat KLF12 A: Alignment of KLF12 domains of different species; B: Prediction of secondary structure of goat KLF12; C: Prediction of tertiary structure of goat KLF12 protein; D: Prediction of goat KLF12 protein interaction"

Fig. 4

Homology comparison and phylogenetic tree of KLF12 among different species"

Fig. 5

The expression pattern of KLF12 in goat variety tissues and subcutaneous adipocytes differentiation period The Duncan method was used to indicate the significance of the difference, and different letters indicated P<0.01. n=6"

Fig. 6

Knockdown KLF12 to promote goat subcutaneous adipocytes differentiation A: Knockdown efficiency of KLF12; B: Triglyceride content; C: Oil red O and Bodipy staining; *: P<0.05; **: P<0.01"

Fig. 7

The expression changes of key adipogenic regulatory genes after knockdown KLF12 in goat subcutaneous adipocytes"

[1] FUJISAWA T, KAGAWA K, HISATOMI K, KUBOTA K, SATO H, NAKAJIMA A, MATSUHASHI N. Obesity with abundant subcutaneous adipose tissue increases the risk of post-ERCP pancreatitis. Journal of Gastroenterology, 2016, 51(9): 931-938. doi: 10.1007/s00535-016-1160-x.
doi: 10.1007/s00535-016-1160-x
[2] LUO L, LIU M. Adipose tissue in control of metabolism. The Journal of Endocrinology, 2016, 231(3): R77-R99. doi: 10.1530/JOE-16-0211.
doi: 10.1530/JOE-16-0211
[3] FOSTER M T, SOFTIC S, CALDWELL J, KOHLI R, DE KLOET A D, SEELEY R J. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1(2): e00015. doi: 10.1002/phy2.15.
doi: 10.1002/phy2.15
[4] BOOTH A D, MAGNUSON A M, FOUTS J, WEI Y, WANG D, PAGLISSOTTI M J, FOSTER M T. Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte, 2018, 7(4): 261-272. doi: 10.1080/21623945.2018.1525252.
doi: 10.1080/21623945.2018.1525252
[5] CHEN P, HOU X, HU G, WEI L, JIAO L, WANG H, CHEN S, WU J, BAO Y, JIA W. Abdominal subcutaneous adipose tissue: A favorable adipose depot for diabetes?. Cardiovascular Diabetology, 2018, 17(1): 93. doi: 10.1186/s12933-018-0734-8.
doi: 10.1186/s12933-018-0734-8
[6] SONG B, DI S, CUI S, CHEN N, WANG H, WANG X, GAO Q, TONG G, WANG H, HUANG X, DING L, GAO Y, LIU J, WANG X. Distinct patterns of PPARγ promoter usage, lipid degradation activity, and gene expression in subcutaneous adipose tissue of lean and obese swine. International Journal of Molecular Sciences, 2018, 19(12): 3892. doi: 10.3390/ijms19123892.
doi: 10.3390/ijms19123892
[7] FERNANDEZ-ZAPICO M E, LOMBERK G A, TSUJI S, DEMARS C J, BARDSLEY M R, LIN Y H, ALMADA L L, HAN J J, MUKHOPADHYAYD, ORDOG T, BUTTAR N S, URRUTIA R. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. The Biochemical Journal, 2011, 435(2): 529-537. doi: 10.1042/BJ20100773.
doi: 10.1042/BJ20100773
[8] GHALEB A M, NANDAN M O, CHANCHEVALAP S, DALTON W B, HISAMUDDIN I M, YANG V W. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Research, 2005, 15(2): 92-96. doi: 10.1038/sj.cr.7290271.
doi: 10.1038/sj.cr.7290271
[9] RANE M J, ZHAO Y, CAI L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine, 2019, 40: 743-750. doi: 10.1016/j.ebiom.2019.01.021.
doi: 10.1016/j.ebiom.2019.01.021
[10] HASHMI S, ZHANG J, SIDDIQUI S S, PARHAR R S, BAKHEET R, AL-MOHANNA F. Partner in fat metabolism: Role of KLFs in fat burning and reproductive behavior. 3 Biotech, 2011, 1(2): 59-72. doi: 10.1007/s13205-011-0016-6.
doi: 10.1007/s13205-011-0016-6
[11] GUO H, KHAN R, RAZA S H A, NING Y, WEI D, WU S, HOSSEINI S M, ULLAH I, GARCIA M D, ZAN L. KLF15 promotes transcription of KLF3 gene in bovine adipocytes. Gene, 2018, 659: 77-83. doi: 10.1016/j.gene.2018.03.049.
doi: 10.1016/j.gene.2018.03.049
[12] MATSUBARA Y, AOKI M, ENDO T, SATO K. Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2013, 165(3): 189-195. doi: 10.1016/j.cbpb.2013.04.002.
doi: 10.1016/j.cbpb.2013.04.002
[13] BANERJEE S S, FEINBERG M W, WATANABE M, GRAY S, HASPEL R L, DENKINGER D J, KAWAHARA R, HAUNER H, JAIN M K. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. The Journal of Biological Chemistry, 2003, 278(4): 2581-2584. doi: 10.1074/jbc.M210859200.
doi: 10.1074/jbc.M210859200
[14] 郭红芳. KLF3和KLF15基因对牛前体脂肪细胞分化和脂质代谢调控研究[D]. 杨凌: 西北农林科技大学, 2018.
GUO H F. The function of KLF3 and KLF15 in Bovine preadipocyte differentiation and lipid metabolism[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[15] GODIN-HEYMANN N, BRABETZ S, MURILLO M M, SAPONARO M, SANTOS C R, LOBLEY A, EAST P, CHAKRAVARTY P, MATTHEWS N, KELLY G, JORDAN S, CASTELLANO E, DOWNWARD J. Tumour-suppression function of KLF12 through regulation of anoikis. Oncogene, 2016, 35(25): 3324-3334. doi: 10.1038/onc.2015.394.
doi: 10.1038/onc.2015.394
[16] MAK C S L, YUNG M M H, HUI L M N, LEUNG L L, LIANG R, CHEN K, LIU S S, QIN Y, LEUNG T H Y, LEE K F, CHAN K K L, NGAN H Y S, CHAN D W. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Molecular Cancer, 2017, 16(1): 11. doi: 10.1186/s12943-017-0582-2.
doi: 10.1186/s12943-017-0582-2
[17] HE Z, GUO X, TIAN S, ZHU C, CHEN S, YU C, JIANG J, SUN C. MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): 126. doi: 10.1186/s13046-019-1105-3.
doi: 10.1186/s13046-019-1105-3
[18] XUN J, WANG C, YAO J, GAO B, ZHANG L. Long non-coding RNA HOTAIR modulates KLF12 to regulate gastric cancer progression via PI3K/ATK signaling pathway by sponging miR-618. OncoTargets and Therapy, 2019, 12: 10323-10334. doi: 10.2147/OTT.S223957.
doi: 10.2147/OTT.S223957
[19] HUANG C, JIANG Y, ZHOU J, YAN Q, JIANG R, CHENG X, XING J, DING L, SUN J, YAN G, SUN H. Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reproductive Biology and Endocrinology: RB&E, 2017, 15(1): 25. doi: 10.1186/s12958-017-0243-8.
doi: 10.1186/s12958-017-0243-8
[20] MEI H, LI L, GRISWOLD M, MOSLEY T. Gene expression meta-analysis of seven candidate gene sets for diabetes traits following a GWAS pathway study. Frontiers in Genetics, 2018, 9: 52. doi: 10.3389/fgene.2018.00052.
doi: 10.3389/fgene.2018.00052
[21] SHEN L, TAN Z, GAN M, LI Q, CHEN L, NIU L, JIANG D, ZHAO Y, WANG J, LI X, ZHANG S, ZHU L. tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating adipogenesis. Biomolecules, 2019, 9(7). doi: 10.3390/biom9070274.
doi: 10.3390/biom9070274
[22] HE C, WANG Y, XU Q, XIONG Y, ZHU J, LIN Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Animal Science Journal, 2021, 92(1): e13514. doi: 10.1111/asj.13514.
doi: 10.1111/asj.13514
[23] 池永东, 王永, 胡萌, 何小芳, 朱江江, 赵越, 林亚秋. 山羊不同组织器官的内参基因筛选. 基因组学与应用生物学, 2020, 39(2): 561-567. doi: 10.13417/j.gab.039.000561.
doi: 10.13417/j.gab.039.000561
CHI Y D, WANG Y, GU M, HE X F, ZHU J J, ZHAO Y, LIN Y Q. Screening of internal reference genes in different tissues and organs of goats. Genomics and Applied Biology, 2020, 39(2): 561-567. doi: 10.13417/j.gab.039.000561. (in Chinese)
doi: 10.13417/j.gab.039.000561
[24] ORCI L, COOK W S, RAVAZZOLA M, WANG M Y, PARK B H, MONTESANO R, UNGER R H. Rapid transformation of white adipocytes into fat-oxidizing machines. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 2058-2063. doi: 10.1073/pnas.0308258100.
doi: 10.1073/pnas.0308258100
[25] GAO Z, DAQUINAG A C, SU F, SNYDER B, KOLONIN M G. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge, England), 2018, 145(1). doi: 10.1242/dev.155861.
doi: 10.1242/dev.155861
[26] 苑洪霞, 骆金红, 冯文武, 陈祥. 猪LYRM1基因对脂肪沉积的影响研究. 畜牧兽医学报, 2019, 50(4): 677-687. doi: 10.11843/j.issn.0366-6964.2019.04.001.
doi: 10.11843/j.issn.0366-6964.2019.04.001
YUAN H X, LUO J H, FENG W W, CHEN X. Study on the effect of LYRM1 gene on the fat deposition of pig. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4): 677-687. doi: 10.11843/j.issn.0366-6964.2019.04.001. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2019.04.001
[27] 王香明. DNMT3A对猪肌内前体脂肪细胞增殖与分化的作用机制研究[D]. 杨凌: 西北农林科技大学, 2018.
WANG X M. The mechanism of DNMT3A in proliferation and differentiation of porcine intramuscular preadipocytes[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[28] MEHTA F, THEUNISSEN R, POST M J. Adipogenesis from bovine precursors. Methods in Molecular Biology (Clifton, N.J.), 2019, 1889: 111-125. doi: 10.1007/978-1-4939-8897-6_8.
doi: 10.1007/978-1-4939-8897-6_8
[29] 柴孟龙, 李青莹, 姜昊, 刘红羽, 张嘉保, 吕文发. 锌指蛋白15在猪前体脂肪细胞分化中的作用. 吉林农业大学学报, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143.
doi: 10.13327/j.jjlau.2016.3143
CHAI M L, LI Q Y, JIANG H, LIU H Y, ZHANG J B, LÜ W F. Role of zinc finger protein15 in differentiation of porcine preadipocyte. Journal of Jilin Agricultural University, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143. (in Chinese)
doi: 10.13327/j.jjlau.2016.3143
[30] 张娟娟. miR-20a-5p通过靶向Klf3调控小鼠骨髓间充质干细胞成脂分化的研究[D]. 天津: 天津医科大学, 2018.
ZHANG J J. MiR-20a-5p Modulates adipogenic differentiation in mouse bone marrow derived stromal cells by targeting Klf3[D]. Tianjin: Tianjin Medical University, 2018. (in Chinese)
[31] ZHENG X, KUANG Y, LV W, CAO D, SUN Z, SUN X. Genome-wide association study for muscle fat content and abdominal fat traits in common carp (Cyprinus carpio). PloS ONE, 2016, 11(12): e0169127. doi: 10.1371/journal.pone.0169127.
doi: 10.1371/journal.pone.0169127
[32] KIM J, LEE T, KIM T H, LEE K T, KIM H. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: Evidence for candidate genes on human chromosome 2. BMC Genomics, 2012, 13: 711. doi: 10.1186/1471-2164-13-711.
doi: 10.1186/1471-2164-13-711
[33] PALMER N D, GOODARZI M O, LANGEFELD C D, WANG N, GUO X Q, TAYLOR K D, FINGERLIN T E, NORRIS J M, BUCHANAN T A, XIANG A H, et al. Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium[EB/OL]. Diabetes, 2015, 64(5): 1853-1866. doi: 10.2337/db14-0732.
doi: 10.2337/db14-0732
[34] SHEN X, HU Y, JIANG Y, LIU H, ZHU L, JIN X, SHAN H, ZHEN X, SUN L, YAN G, SUN H. Krüppel-like factor 12 negatively regulates human endometrial stromal cell decidualization. Biochemical and Biophysical Research Communications, 2013, 433(1): 11-17. doi: 10.1016/j.bbrc.2013.02.078.
doi: 10.1016/j.bbrc.2013.02.078
[35] HAYWOOD N J, SLATER T A, DROZD M, WARMKE N, MATTHEWS C, CORDELL P A, SMITH J, RAINFORD J, CHEEMA H, MAHER C, BRIDGE K I, YULDASHEVA N Y, CUBBON R M, KEARNEY M T, WHEATCROFT S B. IGFBP-1 in cardiometabolic pathophysiology-insights from Loss-of-Function and Gain-of-Function studies in male mice. Journal of the Endocrine Society, 2020, 4(1): bvz006. doi: 10.1210/jendso/bvz006.
doi: 10.1210/jendso/bvz006
[36] WHEATCROFT S B, KEARNEY M T. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: Implications for metabolic homeostasis. Trends in Endocrinology and Metabolism: TEM, 2009, 20(4): 153-162. doi: 10.1016/j.tem.2009.01.002.
doi: 10.1016/j.tem.2009.01.002
[37] HAYWOOD N J, SLATER T A, MATTHEWS C J, WHEATCROFT S B. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes[EB/OL]. Molecular Metabolism, 2019, 19: 86-96. doi: 10.1016/j.molmet.2018.10.008.
doi: 10.1016/j.molmet.2018.10.008
[38] PÉREZ-TORRES I, GUTIÉRREZ-ALVAREZ Y, GUARNER-LANS V, DÍAZ-DÍAZ E, MANZANO PECH L, CABALLERO-CHACÓN S D C. Intra-Abdominal Fat Adipocyte Hypertrophy through a progressive alteration of lipolysis and lipogenesis in metabolic syndrome rats. Nutrients, 2019, 11(7). doi: 10.3390/nu11071529.
doi: 10.3390/nu11071529
[39] RUPPERT P M M, KERSTEN S. A lipase fusion feasts on fat. The Journal of Biological Chemistry, 2020, 295(10): 2913-2914. doi: 10.1074/jbc.H120.012744.
doi: 10.1074/jbc.H120.012744
[40] NIMONKAR A V, WELDON S, GODBOUT K, PANZA D, HANRAHAN S, CUBBON R, XU F, TRAUGER J W, GAO J, VOZNESENSKY A. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: Implications for managing familial chylomicronemia syndrome. The Journal of Biological Chemistry, 2020, 295(10): 2900-2912. doi: 10.1074/jbc.RA119.011079.
doi: 10.1074/jbc.RA119.011079
[41] JEON Y G, LEE J H, JI Y, SOHN J H, LEE D, KIM D W, YOON S G, SHIN K C, PARK J, SEONG J K, CHO J Y, CHOE S S, KIM J B. RNF20 functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes. Diabetes, 2020, 69(1): 20-34. doi: 10.2337/db19-0508.
doi: 10.2337/db19-0508
[42] MORÁN-SALVADOR E, LÓPEZ-PARRA M, GARCÍA-ALONSO V, TIOS E, MARTÍNEZ-CLEMENTE M, GONZÁLEZ-PÉRIZ A, LÓPEZ-VICARIO C, BARAK Y, ARROYO V, CLÁRIA J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2011, 25(8): 2538-2550. doi: 10.1096/fj.10-173716.
doi: 10.1096/fj.10-173716
[43] RODEHEFFER M S, BIRSOY K, FRIEDMAN J M. Identification of white adipocyte progenitor cells in vivo. Cell, 2008, 135(2): 240-249. doi: 10.1016/j.cell.2008.09.036.
doi: 10.1016/j.cell.2008.09.036
[44] MITTERBERGER M C, LECHNER S, MATTESICH M, KAISER A, PROBST D, WENGER N, PIERER G, ZWERSCHKE W. DLK1 (PREF1) is a negative regulator of adipogenesis in CD105+/CD90+/ CD34+/CD31-/FABP4- adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women . Stem Cell Research, 2012, 9(1): 35-48. doi: 10.1016/j.scr.2012.04.001.
doi: 10.1016/j.scr.2012.04.001
[1] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[2] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[3] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[4] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[5] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[6] GU MingHui,LIU YongFeng,SHEN Qian,QIAO ChunYan. Improving Quality and Delaying Oxidation in Goat Meat Refrigeration by Polyphenols from Thinned Young Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(8): 1643-1654.
[7] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[8] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[9] QU XingMei,XUE FuLai,HUANG XiaoYu,ZHANG Yu,XING XiaoNan,ZHANG EnPing. Effects of Weaning Age and Dietary Nutritional Levels on Intestinal Morphology and Activity of Digestive Enzymes in 6-Month-Old Shaanbei White Cashmere Goats [J]. Scientia Agricultura Sinica, 2019, 52(19): 3460-3470.
[10] LIU Yuan,LI WenYang,WU XianFeng,HUANG QinLou,GAO ChengFang,CHEN XinZhu,ZHANG XiaoPei. Transcriptome Analysis of Differentially Gene Expression Associated with longissimus doris Tissue in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(14): 2525-2537.
[11] ZHU JiangJiang,LIN YaQiu,WANG Yong,LIN Sen. Expression Profile and Correlations of Kruppel Like Factors During Caprine (Capra Hircus) Preadipocyte Differentiation [J]. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351.
[12] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
[13] ZHANG JiWei,GAO Kun,ZHANG YingJie,LIU YueQin,DUAN ChunHui. Effects of Diets with Energy-to-Nitrogen Rations on Growth Performance and Nutrients Apparent Digestibility in Growing Yanshan Cashmere Goat [J]. Scientia Agricultura Sinica, 2019, 52(1): 154-165.
[14] SUI MengHua, ZHENG Qi, WU Hao, DING JianPing, LIU Yong, LI WenYong, CHU MingXing, ZHANG ZiJun, LING YingHui. Isolation, Culture and Myogenic Differentiation of Muscle Stem Cells in Goat Fetal [J]. Scientia Agricultura Sinica, 2018, 51(8): 1590-1597.
[15] LI JinPeng,WANG GuoJun,ZHAO Tian,ZHOU GuangChen,YANG YuXin. Effects of Temperature and Relative Humidity on the Growth Performance and Blood Index of Goats [J]. Scientia Agricultura Sinica, 2018, 51(23): 4556-4574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!