Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3477-3492.doi: 10.3864/j.issn.0578-1752.2015.17.014

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Review on Research in Plant Nutrition and Fertilizers

BAI You-lu   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2015-06-01 Online:2015-09-01 Published:2015-09-01

Abstract: This article reviewed the major achievements and influential events in plant nutrition and fertilizer since 1840. In plant nutrition physiology and biology fields, the essential plant nutrition elements, the process of nutrient absorption and translocation, the nutrient transfer and re-utilization, the role of mycorrhizal in plant nutrition, and plant nutrition and disease resistance were reviewed. In nutrition diagnosis field, available nutrient elements extraction and determination in chemical diagnosis, and spectrum diagnosis were reviewed. In the fertilization technology field, the fertilization models including nutrient classification model, fertilizer effecting function model, nutrients balance model and DRIS method were reviewed. The article also described the development of precision fertilization and irrigation technology. The pollutions caused by fertilization, including greenhouse gas emissions, groundwater pollution and surface water pollution were summarized. This article also introduced current main fertilizer products and fertilizer resources worldwide. In this article, it was pointed out that first, the key to solve fertilizer related problems is to improve fertilizer use efficiency. Secondly, to solve the problem of excessive fertilization on vegetables, new and improved theory and technology on vegetable fertilization are needed. Thirdly, the selection of nutrient efficiency gene should have to be taken place at common nutrient conditions in field. Fourthly, new fertilization technology is an important step to improve the fertilizer efficiency. Lastly, fertilizer industry development needs to be based on currently available fertilizer resources. The development of plant nutrition and fertilizer science is closely related to the population, resources and environmental problems that the people are facing. Fertilizer secures food security, but at the same time causes tremendous pressure to the environment. “Get more food with scientific use of fertilizer” is the direction of plant nutrition and fertilizer research in the future.

Key words: plant nutrition, fertilizer, plant nutrition physiology, nutrition diagnosis, fertilization technology

[1]    胡厚宣. 殷代农作施肥说. 历史研究, 1955(1): 97-106.
Hu H X. Fertilization for crop in Yin dynasty. Historical Research, 1955(1): 97-106. (in Chinese)
[2]    尤·李比希著, 刘更另译. 化学在农业和生理学上的应用. 北京: 中国农业出版社, 1983.
J.V.Liebig (writer), Liu G L (translator). Organic Chemistry in Its Application to Agriculture and Physiology. Beijing: China Agriculture Press, 1983. (in Chinese)
[3]    Schreiner O. Essential plant food elements. American Potato Journal, 1930, 7(11): 307-321.
[4]    McMurtrey J E. Distinctive plant symptoms caused by deficiency of any one of the chemical elements essential for normal development. The Botanical Review, 1938: 183-203.
[5]    Arnon D I, Stout P R. The essentiality of certain elements in minute quantity for plant with special reference to copper. Plant Physiology, 1939, 14: 371-375.
[6]    Broyer T C, Carlton A B, Johnson C M, Stout P R. Chlorine-a micronutrient element for higher plants. Plant Physiology, 1954, 29(6): 526-532.
[7]    Nicholas D J D. Minor mineral elements. Annual Review of Plant Physiology, 1961, 12: 63-90.
[8]    Tisdal S L, Nelson W L, Beaton J D. Soil Fertility and Fertilizers, 4 edition. London: Macmillan Publish Company, 1985.
[9]    Brown P H, Welch R M, Madison J T. Effect of nickel deficiency on soluble anion, amino acid, and nitrogen levels in barley. Plant and Soil, 1990, 125(1): 19-27.
[10]   Lincoln Taiz, Eduardo Zeiger. Plant Physiology (5th Edition), Sunderland, Massachusetts: Sinauer Associates Inc.,Publishers, 2010.
[11]   潘瑞炽. 植物生理学. 北京: 高等教育出版社, 2004.
Pan R Z. Plant Physiology. Beijing: Higher Education Press, 2004. (in Chinese)
[12]   Marschner H. Mineral Nutrition of Higher Plant (2th Edition). London: Academic Press, Company Publishers, 1995.
[13]   人民教育出版社生物室编著. 生物(第一册). 北京: 人民教育出版社, 2003.
Editorial Department of Biology, People’s Education Press. Biology (1th Edition). Beijing: People’s Education Press, 2003. (in Chinese)
[14]   苏德纯. 作物根际环境研究进展. 世界农业, 1994(1): 41-42.
Su D C. Review in crop rhizosphere environment. World Agriculture, 1994(1): 41-42. (in Chinese)
[15]   鲁如坤. “微域土壤学”―一个可能的土壤学的新分支. 土壤学报, 1999, 36(2): 287-288.
Lu R K. Microzone soli science-a possible new branch of soil science. Acta Pedologica Sinica, 1999, 36(2): 287-288. (in Chinese)
[16]   杜振宇, 周健民. 钾在红壤肥际微域中的迁移. 土壤学报, 2005,42(6): 1033-1039.
Du Z Y, Zhou J M. Movement of potassium in fertilizer microsites in red earth. Acta Pedologica Sinica, 2005, 42(6): 1033-1039. (in Chinese)
[17]   徐岩. 有机肥优化土壤微域环境的机制研究[D]. 吉林: 吉林农业大学, 2003.
Xu Y. Studies on optimization soil microenvironment with organic fertilizers[D]. Jilin: Jilin Agricultural University, 2003. (in Chinese) 
[18]   喻田甜, 彭思利, 朱劲, 宝德俊, 袁玲. 施肥对潮土肥际微域微生物数量分布的影响. 贵州农业科学, 2014, 42(3): 83-87.
Yu T T, Peng S L, Zhu J, Bao D J, Yuan L. Effect of fertilizations on amount and distribution of soil microbes in fertilizer microsites of fluvo-aquic soli. Guizhou Agricultural Sciences, 2014, 42(3): 83-87. (in Chinese)
[19]   陈欢. 脲/酶硝化抑制剂的效果比较及DMPP对氮素肥际与小麦根系微域分布的影响[D]. 南京: 南京农业大学, 2010.
Chen H. Comparison of urease/nitrification inhititors and influence of 3, 4-dimethylpyrazole phosphate (DMPP) on nitrogen patch and wheat root micro-distribution[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[20]   Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-564.
[21]   Graham R D. Breeding for nutritional characteristics in cereals. Advances in Plant Nutrition, 1984, 1: 57-102.
[22]   Gourley C J P, Allan D L, Russelle M P. Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant and Soil, 1994, 158: 29-37.
[23]   Sattelmacher B, Horst W J, Becker H C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Journal of Plant Nutrition and Soil Science, 1994, 157: 215-224.
[24]   Gaur V S, Singh U S, Gupta A K, Kumar A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Molecular Biology Reports, 2012, 39(3): 2233-2242.
[25]   赵首萍, 赵学强, 施卫明. 高等植物氮素吸收分子机理研究进展. 土壤, 2007, 39(2): 173-180.
Zhao S P, Zao X Q, Shi W M. Advance in research on mdecular mechanism for nitrogen absorption in higher plant. Soil, 2007, 39(2): 173-180.
[26]   Greory F G. Report of the 13th international Horticultural Congress. Royal horticultural Society, London, England, 1953, 573-584.
[27]   William R F. Redistribution of mineral elements during development. Annual Review of Plant Physiology, 1955, 6: 25-42.
[28]   Francisco I, Pugnaire F, Stuart C. Controls over nutrient resorption from leaves of evergreen mediterranean species. Ecology, 1993, 74(1): 124-129.
[29]   李志安, 王伯荪, 林永标, 曾友特. 植物营养转移研究进展. 武汉植物学研究, 2000, 18(3): 229-236.
Li Z A, Wang B S, Lin Y B, Zeng Y T. A review of study on nutrient resorption of plant. Journal of Wuhan Botanical Research, 2000, 18(3): 229-236. (in Chinese)
[30]   Drenovsky R E, Koehler C E, Skelly K, Richards J H. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 2013, 171(1): 39-50.
[31] Ratnam J, Sankaran M, Hanan N P, Grant R C, Zambatis N. Nutrient resorption patterns of plant functional groups in a tropical savanna: Variation and functional significance. Oecologia, 2008, 157(1): 141-151.
[32]   陈冬梅, 马永安, 刘保华. 不同落黄类型小麦品种的籽粒灌浆及叶片光合特性. 麦类作物学报, 2008, 28(6): 1063-1067.
Chen D M, Ma Y A, Liu B H. Grain filling and photosynthetic charateristics of wheat varieties differing in senesced yellowing type. Journal of Triticeae Crops, 2008, 28(6): 1063-1067. (in Chinese)
[33]   郜俊红, 赵建国. 不同落黄类型小麦品种灌浆特征研究. 农业科技通讯, 2015(4): 80-82.
Gao J H, Zhao J G.Study ongrain filling charateristics of wheat varieties differing in senesced yellowing type. Bulletin of Agricultural Science and Technology,2015(4): 80-82. (in Chinese)
[34]   李明, 梁晓红, 熊德中. 不同肥力植烟土壤上施氮水平对烤烟氮代谢的影响. 热带作物学报, 2014, 35(2): 271-276.
Li M, Liang X H, Xiong D Z. Effects of various nitrogen application levels on nitrogen metabolism of flue-cured tobacco in different fertility levels tobacco-planting soil. Chinese Journal of Tropical Crops, 2014, 35(2): 271-276. (in Chinese)
[35]   王鸣岐. 菌根理论与研究进展. 世界科学, 1985(2): 13-16.
Wang M Q. Review in theory of mycorrhizae. World Science, 1985(2): 13-16. (in Chinese)
[36]   郝会军, 刘英, 洪波, 雪珍. VA菌根与植物矿质营养的研究进展. 安徽农业科学, 2007, 35(4): 978-979.
Hao H J, Liu Y, Hong B, Xue Z. Research progress of VA-mycorrhizal fungi and mineral nutrition of plant. Journal of Anhui Agricultural Sciences,2007, 35(4): 978-979. (in Chinese)
[37]   http://zuoye.baidu.com/question/cad66e380e98c10afc58eded008373f5. html
[38]   Ames R N, Reid C P P, Porter L K. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by glomusmosseae, avesicu lar-arbuscular mycorrhizal fungus. New Phytologist, 1983, 95(3): 381-396.
[39]   Lambers H, Raven J A, Shaver G R, Smith S E. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology Evolution, 2008, 23: 95-103.
[40]   Jung S C, Martinez-Medina A, Lopez-Raez J A, Pozo M J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38: 651-664.
[41]   Saia S, Amato G, Frenda A S, Giambalvo D, Ruisi P. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS One, 2014, 9(3): e90738.
[42]   Augé R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 2001, 11: 3-42.
[43]   陈贤英. 内生菌根与小麦伤流液及产量的关系. 福建农业科技, 1984(5): 10-12.
Chen X Y. Relationship between endomycorrhizae, bleeding and yield of wheat. Fujian Agricrltural Science and Technology, 1984(5): 10-12. (in Chinese)
[44]   方宇澄, 刘延荣, 方榕. 烟草内生菌根真菌的分离鉴定. 真菌学报, 1986, 5(3): 185-190.
Fang Y C, Liu Y R, Fang R. Theisolation and identification of endomycorrhizal fungi on tobacco. Acta Mycologica Sinica, 1986, 5(3): 185-190. (in Chinese)
[45]   郭鹏, 贺学礼. AM 真菌对草莓的接种效应研究. 河北农业大学学报, 2006, 29(4): 53-56.
Guo P, He X L. Inoculation effect of arbuscular mycorrhizal fungi for strawberry. Journal of Agricultural University of Hebei, 2006, 29(4): 53-56. (in Chinese)
[46]   洪淑梅, 李培香, 方宇澄. 番茄内生菌根研究初报. 山东农业大学学报, 1987, 18(2): 48-52.
Hong S M, Li P X, Fang Y C. Preliminary report on the study of endomycorrhizal fungi in tomato. Journal of Shandong Agricultural University, 1987, 18(2): 48-52. (in Chinese)
[47]   曹斌, 廖月葵, 何开家, 周军, 司徒百兴,  赖其瑞. 广西人工栽培铁皮石斛内生菌根的研究. 广西植物, 2010, 30(5): 626-628.
Cao B, Liao Y K, He K J, Zhou J, Situ B X, Lai Q R. Study on endomycorrhiza of cultivated Dendrobium of ficanale. Guihaia, 2010, 30(5): 626-628. (in Chinese)
[48]   肖军, 陈珣, 肇莹, 王红, 龚娜, 王娜, 丑静, 杨涛, 杨镇. 内生菌根菌对蓝莓抗氧化成分含量的影响. 湖北农业科学, 2013, 52(10): 2408-2410.
Xiao J, Chen X, Zhao Y, Wang H, Gong N, Wang N, Chou J, Yang T, Yang Z. Effect of endomycorrhizae on antioxidant constituent of Semen trigonellae. Hubei Agricultural Sciences, 2013, 52(10): 2408-2410. (in Chinese)
[49]   孙玥, 庄海峰, 贾淑霞, 谷加存, 王政权. 多年施用氮肥对水曲柳人工林内生菌根真菌侵染及其根尖形态的影响. 林业科学, 2010, 46(9): 50-57.
Sun Y, Zhuang H F, Jia S X, Gu J C, Wang Z Q. Effects of nitrogen fertilization on VA mycorrhizal fungal colonizationand root morphology of the first order roots in Fraxinus mandshurica plantation in response to the colonization. Scientia Silvae Sinicae,2010, 46(9): 50-57. (in Chinese)
[50]   Pierre-Emmanuel C, Marc B, Abdala G D, Pascale F K, Francois L T, Francois R, Marie-Pierre T, Stephane U, Jean G. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biology & Biochemistry, 2010, 42: 679-698.
[51]   Diagne N J, Sanguin T H. Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biology & Biochemistry, 2013, 57: 468-476.
[52]   Baldrian P. Ectomycorrhizal fungi and their enzymes in soils: Is there enough evidence for their role as facultative soil saprotrophs? Oecologia, 2009, 161(4): 657-660.
[53]   Talbot J M, Bruns T D, Smith D P, Branco S, Glassman S I, Erlandson S, Vilgalys R, Peay K G. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology & Biochemistry, 2013, 57: 282-291.
[54]   Phillips R P, Brzostek E, Midgley M G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 2013, 199: 41-51.
[55]   Huang Y, Wang J. Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere, 2013, 92: 760-764.
[56]   Sylvia D M. Suppressive influence of Laccaria laccata on Fusarium oxysporum and on douglas-fir seedlings. Phytopathology, 1983, 73(3): 384-392.
[57]   栾庆书. 几种外生菌根菌对土传病原菌的拮抗作用. 辽宁林业科技, 1992(6): 45-49.
Luan Q S. Antagonistic effect of several extomycorrhizae on soil borne pathogens.  Liaoning Forestry Science and Technology, 1992(6): 45-49. (in Chinese)
[58]   吴小芹, 孙民琴, 高悦, 盛江梅, 叶建仁. 几种外生菌根菌对松苗抗非根部病害的影响. 林业科学, 2007, 43(6): 88-93.
Wu X Q, Sun M Q, Gao Y, Sheng J M, Ye J R. Effects of some ectomycorrhizas on pine seedlings to disease resistance. Scientia Silvae Sinicae, 2007, 43(6): 88-93. (in Chinese)
[59]   Huber D M, Watson R D, Steiner C W. Crop residues, nitrogen and plant disease. Soil Science, 1965, 100: 302-308.
[60]   Datnoff L E, Elmer W H, Huber D M. Mineral nutrition and plant disease. Minnesota: The American Phytopathological Society Press, Second printing, 2009.
[61]   Huber D M, Keeler R R. Alteration of wheat peptidase activity after infection with powdery mildew (Abstract). Proceedings of the American Phytopathological Society, 1977, 4: 163.
[62]   Anne S, Prabhu, Nand K, Fageria, Berni R F, Rodrigues F A. Phosphorus and plant disease. In:mineral nutrition and plant disease. 45-55.
[63]   Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 2008, 133: 682-691.
[64]   Prabhu A S, Fageria N K, Huber D M. Potassium and plant disease. In:mineral nutrition and plant disease. 57-78. 
[65]   Rahman M, Punia Z K. Calcium and Plant disease/mineral nutrition and plant In:mineral nutrition and plant disease. 79-93.
[66]   严梅荣. 一百余年来凯氏定氮法的进展. 粮油仓储科技通讯, 1986(2): 49-51.
Yan M R. Progress in Kjeldah method of nitrogen determination for hundreds. Liang You Cang Chu Ke Ji Tong Bao, 1986(2): 49-51. (in Chinese)
[67]   Németh K. Electro-ultrafiltration of aqueous soil suspension with simultaneously varying temperature and voltage. Plant and Soil , 1982, 64(1): 7-23.
[68]   Di Meo V, Michele A, Paola A. Availability of potassium, calcium, magnesium, and sodium in “Bulk” and “Rhizosphere” soil of field-grown corn determined by electro-ultrafiltration. Journal of Plant Nutrition, 2003, 26(6): 1149-1168.
[69]   Walkley A, Black I A. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 1934, 37: 29-37.
[70]   Gelman F, Binstock R, Halicz L. Application of the Walkley-Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel, 2012, 96: 608-610.
[71]   牛永绮, 陈兰生. 土壤有机质测定方法的进展. 干旱环境监测, 1998, 12(2): 97-100.
Niu Y Q, Chen L S. Progress of soil organism determination. Arid Environmental Nvironmental Monitoring, 1998, 12(2): 97-100. (in Chinese)
[72]   Salehi M H, Beni O H, Harchegani H B. Refining soil organic matter determination by loss-on-ignition. Pedosphere, 2011, 21(4): 473-482.
[73]   Murphy J, Riley J P. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27: 31-36.
[74]   Rahman M H, Sugiyama S. Dynamics of microbial community in Japanese andisol of apple orchard production systems. Communications in Soil Science and Plant Analysis, 2008, 39: 1630-1657.
[75]   Jones Jr J B. Soil test methods: Past, present, and furture use of soil extractants. Communication in Soil Science and Plant Analysis, 1998, 29(11-14): 1543-1552.
[76]   Portch S. A systematic approach to soil fertility evaluation and improvement. http://www.agroservicesinternational.com/booklet.htm
[77]   金继运, 白由路, 杨俐苹. 高效土壤养分测试技术与设备. 北京: 中国农业出版社, 2006.
Jin J Y, Bai Y L, Yang L P. Technology and equipment of efficient soil testing. Beijing: China agriculture press, 2006. (in Chinese)
[78]   中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978.
Institute of Soil Science, Chinese Academy of Science. Soil testing of physical and chemical properties. Shanghai: Shanghai scientific and technical publishers, 1978. (in Chinese)
[79]   陈志慧, 孙洛新, 钟莅湘, 王琰, 尚保忠, 肖抒. 快速催化极谱法测定土壤中的有效态钼. 岩矿测试, 2014, 33(4): 584-588.
Chen Z H, Sun L X, Zhong L X, Wang Y, Shang B Z, Xiao S. Determination of available molybdenum in soil by rapid catalytic polarography. Rock and Mineral Analysis, 2014, 33(4): 584-588. (in Chinese)
[80]   章炜, 张玉钧, 陈东, 刘晶, 王春龙, 张荣, 赵南京, 刘文清. 内标法在土壤重金属镍元素X荧光分析中的应用研究. 光谱学与光谱分析, 2012, 32(4): 1123-1126.
Zhang W, Zhang Y J, Chen D, Liu J, Wang C L, Zhang R, Zhao N J, Liu W Q. Application of internal standard to analysis of the metal Ni element in soils by X-ray fluorescen spectroscopy. Spectroscopy and Spectral Analysis, 2012, 32(4): 1123-1126. (in Chinese)
[81]   中国科学院土壤研究所. 土壤pH值的测定. 土壤通, 1965(2): 36-38.
Institute of Soil Science, Chinese Academy of Sciences. The test of soil pH. Chinese Journal of Soil Science, 1965(2): 36-38. (in Chinese)
[82]   俞铭钦. 应用火焰光度计的土壤全钾的简捷测定法. 土壤通报,1963(3): 55-59.
Yu M Q. Express method of soil potassium by flame photometer. Chinese Journal of Soil Science, 1963(3): 55-59. (in Chinese)
[83]   帅群, 刘刚, 欧全宏, 徐娟, 任静, 郝建明. 不同类型土壤的FTIR和ICP-MS分析.光谱学与光谱分析, 2014, 34(12): 3401-3405.
Zhao S Q, Liu G, Ou Q H, Xu J, Ren J, Hao J M. Analysis of different types of soil by FTIR and ICP-MS. Spectroscopy and Spectral Analysis, 2014, 34(12): 3401-3405. (in Chinese)
[84]   谢小玲, 李海锋, 李雪莹, 郑天晓, 黎汉强, 赖会珍, 郭翠婷. 土壤全氮半微量定氮法与自动定氮仪定氮法的比较分析. 生态环境学报, 2012, 21(6): 1071-1074.
Xie X L, Li H F, Li X Y, Zheng T X, Li H Q, Lai H Z, Guo C T. Comparison of traditional method with automatic method in soil total nitrogen testing. Ecology and Environmental Sciences, 2012, 21(6): 1071-1074. (in Chinese)
[85]   陈家坊. 近十年来土壤化学分析方法的进展. 土壤学报, 1963, 11(4): 444-451.
Chen J F. Review of soil chemical analysis in decade. Acta Pedologica Sinica, 1963, 11(4): 444-451. (in Chinese)
[86]   Carter G A, Knapp A K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 2001, 88(4): 677-684.
[87]   Jackson R D. Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology, 1986, 4: 65-87.
[88]   戴昌达. 病虫害的遥感探测. 自然灾害学报, 1992, 1(2): 40-46.
Dai C D. Detecting vegetation damage by remote sensing. Journal of Natural Disasters, 1992, 1(2): 40-46. (in Chinese)
[89]   Hosseini R, Newlands N K, Dean C B. Statistical modeling of soil moisture, integrating satellite remote-sensing (SAR) and ground-based data. Remote Sensing, 2015, 7: 2752-2780.
[90]   张桂英. 基于Leica ADS80 系统的航空遥感影像成果质量控制研究. 测绘通报, 2014(10): 89-91.
Zhang G Y. The study of quality control of aerial remote sensing results based on Leica ADS80 system. Bulletin of Surveying and Mapping, 2014(10): 89-91. (in Chinese)
[91]   Zhang C, Walters D, Kovacs J M. Applications of low altitude remote sensing in agriculture upon farmers' requests-a case study in northeastern ontario, Canada. PLoS One, 2014, 9(11): e112894.
[92]   Walsh O S, Klatt A R, Solie J B. Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.). Precision Agriculture, 2013, 14(3): 343-356.
[93]   Salani E, Barrado C, Pastor E. UAV flight experiments applied to  the remote sensing of vegetated areas. Remote Sensing, 2014, 6: 11051-11081.
[94]   Bullock D G, Anderson D S. Evaluation of the minolta SPAD-502 chlorophyll meter for nitrogen management in corn. Journal of Plant Nutrition, 1998, 21(4): 741-755.
[95]   Walsh O S, Klatt A R, Solie J B, Godsey C B, Raun W R. Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.). Precision Agriculture, 2013, 14: 343-356.
[96]   Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 2005, 35(2): 305-317.
[97]   Schepers J S, Blackmer T M, Wilhelm W W, Resende M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology,1996, 148: 523-529.
[98]   Mariotti M, Ercoli L, Masoni A. Spectral properties of iron-deficient corn and sunflower leaves. Remote Sensing of Environment, 1996, 58: 282-288.
[99]   Schubert P, Lund M, Ström L, Eklundh L. Impact of nutrients on peatland GPP estimations using MODIS time series data. Remote Sensing of Environment, 2010, 114: 2137-2145.
[100] Bisson M, Fornaciai A, Coli A, Mazzarini F, Pareschi M T. The vegetation resilience after fire (VRAF) index: Development, implementation and an illustration from central Italy. International Journal of Applied Earth Observation and Geoinformation, 2008, 10: 312-329.
[101] Fitzgerald G, Rodriguez D, O’Leary G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index-the canopy chlorophyll content index (CCCI). Field Crops Research, 2010, 116: 318-324.
[102] Ju C H, Tian Y C, Yao X, Cao W, Zhu Y, Hannaway D. Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 2010, 20(5): 633-644.
[103] Kakani1 V G, Reddy K R. Mineral deficiency stress: Reflectance properties, leaf photosynthesis and growth of nitrogen deficient big bluestem (Andropogon gerardii). Journal of Agronomy and Crop Science, 2010, 196: 379-390.
[104] Nawar S, Buddenbaum H, Hill J. Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region. Remote Sensing, 2015, 7: 1181-1205.
[105] Atzberger C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 2013, 5: 949-981.
[106] Nansen C, Sidumo A J, Martini X, Stefanova K, Roberts J D. Refectance-based assessment of spider mite “bio-response” to maize leaves and plant potassium content in different irrigation regimes. Computers and Electronics in Agriculture, 2013, 97: 21-26.
[107]王兴仁, 陈新平, 张福锁, 毛达如. 施肥模型在我国推荐施肥中的应用. 植物营养与肥料学报, 1998, 4(1): 67-74.
Wang X R, Chen X P, Zhang F S, Mao D R. Application of fertilization model for fertilizer recommendation in China. Plant Nutrition and Fertilizer Science,1998, 4(1): 67-74. (in Chinese)
[108] Fertiliser Manual (RB209), 8th Edition. Department for Environment Food and Rural Affairs. http://www.defra.gov.uk.
[109]李仁岗. 肥料效应函数, 北京: 中国农业出版社, 1987.
Li R G. Fertilizer effect function. Beijing: China Agriculture Press, 1987. (in Chinese)
[110] Kashiath R S, Vipin P B. Application of Mitscherlich-Bray equation for fertlizer use in wheat. Communication in Soil Science and Plant Analysis,2002, 33: 3241-3249.
[111] Afzala S, Islamb M, Obaid-Ur-Rehmanc. Application of mitscherlich- bray equation for fertilizer use on groundnut. Communications in Soil Science and Plant Analysis, 2014, 45: 1636-1645.
[112]白由路, 杨俐苹. 我国农业中的测土配方施肥. 土壤肥料, 2006(2): 3-7.
Bai Y L, Yang L P. Soil testing and fertilizer recommendation in Chinese agriculture. Soils and Fertilizers, 2006(2): 3-7. (in Chinese)
[113]中华人民共和国农业部. 测土配方施肥技术规范(2011年修订版). http://www.moa.gov.cn/zwllm/tzgg/tz/201109/t20110922_2293389. htm
Ministry of Agriculture of the Pople’s Republic. Technical specification of soil testing and fertilizer recommendation(2011 Revised edition). http://www.moa.gov.cn/zwllm/tzgg/tz/201109/t20110922_2293389. htm (in Chinese)
[114]刘成祥, 周鸣铮. 对Truog-Ramamoorthy测土施肥方法的研究与讨论. 土壤学报, 1986, 23(3): 285-289.
Liu C X, Zhou M Z. Discussinon the principle and procedue of fertilizer recommendation proposed by truog and ramamoorthy. Acta Pedologica Sinica, 1986, 23(3): 285-289. (in Chinese)
[115]白由路, 杨俐苹, 金继运. 测土配方施肥原理与实践. 北京: 中国农业科技出版社, 2007.
Bai Y L, Yang L P, Jin J Y. Theory and practice about soil testing and fertilizer recommendation. Beijing: Chinese Agriculture Sci-Tech Press, 2007.(in Chinese)
[116] Stanford G, Legg J O, Smith S J. Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soil and uptake of labeled and unlabeled nitrogen by plants. Plant and Soil, 1973, 39: 113-124.
[117] Miransari M, Mackenzie F. Development of a soil N test for fertilizer requirement for wheat. Journal of Plant Nutrition, 2011, 34: 762-777.
[118]耿增超, 张立新, 赵二龙, 张朝阳, 陈永欣. 陕西红富士苹果矿质营养DRIS标准研究. 西北植物学报, 2003, 23(8): 1422-1428.
Geng Z C, Zhang L X, Zhao E L, Zhang C Y, Chen Y X. Study on the diagnosis with DRIS norm of mineral elements in Fuji apple in Shanxi province. Acta Botanica Boreali-occidentalia Sinica, 2003, 23(8): 1422-1428.
[119] Singh D, Singh K, Hundal H S. Diagnosis and recommendation integrated system (dris) for evaluating nutrient status of cotton (Gossipium hirsutum). Journal of Plant Nutrition, 2012, 35: 192-202.
[120]田杰, 胡秋霞, 杨龙. 基于DRIS的养分诊断程序的实现. 电脑知识与技术(学术交流) , 2007(20): 475-478.
Tian J, Hu Q X, Yang L. Design of nutrition diagnosis program based on DRIS. Computer Knowledge and Technology(Academic Exchange), 2007(20): 475-478. (in Chinese)
[121] Robert P C. Precision agriculture: A challenge for crop nutrition management. Plant and Soil, 2002, 247: 143-149.
[122] Morala F J, Terrónb J M, Rebollo F J. Site-specific management zones based on the Rasch model and geostatistical techniques. Computers and Electronics in Agriculture, 2011, 75: 223-230.
[123] Hummel J W, Gaultney L D, Sudduth K A. Soil property sensing for site-specific crop management. Computers and Electronics in Agriculture, 1996, 14: 121-136.
[124] Hassan S. Chattha A, Qamar U. Variable rate spreader for real-time spot-application of granular fertilizer in wild blueberry. Computers and Electronics in Agriculture, 2014, 100: 70-78.
[125] http://www.caseih.com.cn
[126] https://www.deere.com/en_US/products/equipment/nutrient_application/ nutrient_applicators/2510l/2510l.page
[127] http://www.caseih.com.cn
[128] http://www.micro-trak.com
[129] http://www.midtechserices.com/products.aspx,
[130] http://www.agleadercom.
[131] http://www.agtron.com/en/products/
[132]宋毅, 殷华, 刘晓婧. 从法国SIMA-SIMAGENA展会看欧美农业装备技术创新走势. 世界农业, 2013(4): 149-154.
Song Y, Yin H, Liu X J. The trend of agricultural equipment innovation in European and American from SIMA-SIMAGENA fair in France. World Agriculture, 2013(4):149-154. (in Chinese)
[133]段洁利, 李君, 卢玉华. 变量施肥机械研究现状与发展对策. 农机化研究, 2011(5) : 245-248.
Duan J L, Li J, Lu Y H. Research status and development countermeasure of variable rate fertilization machinery. Journal of Agricultural Mechanization Research,2011(5): 245-248. (in Chinese)
[134] Hagin J, Lowengart A. Fertigation for minimizing environmental pollution by fertilizers. Fertilizer Research, 1996, 43: 5-7.
[135] Ebrahimian H, Mohammad R, Playán K E. Surface fertigation: A review, gaps and needs. Spanish Journal of Agricultural Research, 2014, 12(3): 820-837.
[136] Ayarsa J E, Pheneb C J, Hutmacher R B, Davis K R, Schoneman R A, Vail S S, Mead R M. Subsurface drip irrigation of row crops: A review of 15 years of research at the Water Management Research Laboratory. Agricultural Water Management, 1999, 42: 1-27.
[137]高祥照, 杜森, 钟永红, 吴勇, 张赓. 水肥一体化发展现状与展望. 中国农业信息, 2015, 173: 14-19.
Gao X Z, Du S, Zhong Y H, Wu Y, Zhang G. Review of fertigation. China Agriculture Information, 2015, 173: 14-19. (in Chinese)
[138] Feigin A, Letey J, Jarrell W M. N utilization efficiency by drip irrigated celery receiving preplant or water applied N fertilizer. Agronomy Journal, 1982, 74: 978-983.
[139] Coates R W, Sahoo P K, Schwankl L J, Delwiche M J. Fertigation techiques for use with multiple hydrozones in simultaneous operation. Presicion Agriculture, 2012, 13: 219-235.
[140] IFA. Fertilizer, climate change and enhancing agricultural productivity sustainably, 2009. http://www.fertilizer.org. 
[141] Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environment Pollution, 2003, 124: 179-221.
[142] Land L S. Chesapeake bay nutrient pollution: Contribution from the land application of sewage sludge in Virginia. Marine Pollution Bulletin, 2012, 64: 2305-2308.
[143] Paarlberg R. Food Politics, second edition. Oxford: Oxford University Press, 2013.
[144] http://www.stats.gov.cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_ 30641.html.
[145]白由路. 我国肥料发展若干问题的思考. 中国农业信息, 2014(22): 5-9.
Bai Y L. Viewpoints on some problems of the development fertilizer in China. China Agricultural Information, 2014(22): 5-9. (in Chinese)
[146] http://baike.baidu.com/link?url=AxjZsr4zqiVWqYmGHLmkCgbgE 4D7Pib6HHYqc-XuL73BkWqhA0FTTY3X-6KCeM2qC3hBARUoIGjKtaCtMKSl4a
[147] Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1: 636-639.
[148]汤炎, 张海林, 常志洲. 美国化肥使用概况. 磷肥与复肥, 2003, 18(6): 72-74.
Tang Y, Zhang H L, Chang Z Z. The general situation of fertilizer application in USA. Pho sphate & Compound Fertilizer, 2003, 18(6): 72-74. (in Chinese)
[149]钟本和, 张允湘, 应建康. 料浆法磷铵工艺的发展和展望. 四川大学学报: 工程科学版, 2003, 35(2): 1-5.
Zhong B H, Zhang Y X, Ying J K. Development and prospect of MAP by ammoniated slurry concentrating process. Journal of Sichuan University: Engineering Science Edition, 2003, 35(2): 1-5. (in Chinese)
[150]钟本和. 料浆法磷铵生产工艺发展与五大磷肥工程改造. 中国工程科学, 2004, 6(6): 22-25, 34.
Zhong B H. Development of ASCP for ammonium phosphate technology and five projects of phosphate fertilizer in China. Engineering Science, 2004, 6(6): 22-25, 34. (in Chinese)
[151] 2014年中国钾肥产量数据统计分析. http://www.askci.com/chanye/ 2015/02/08/17304d0u4. shtml
Analysis on the statistical output of potash in China in 2014. http:// www.askci.com/chanye/2015/02/08/17304d0u4. shtml. (in Chinese)
[152] Fixen P E, Johnston A M. World fertilizer nutrient reserves: A view to the future. Journal of the Science of Food and Agriculture, 2012, 92(5): 1001-1005.
[153] Mohammend Y A, Jonathan K, Chim B K, Emily R, Kevin W, Jeremiah M, Guilherme T, Kefyalew G D, William R. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. Journal of Plant Nutrition, 2013, 36: 749-761.
[154] Abbadi J, Gerendas J. Phosphorus use efficiency of safflowerCarthamus tinctorius L.)and sunflower(Helianthus annuus L.). Journal of Plant Nutrition, 2015, 38(7): 1121-1142
[155] http://www.nutrientstewardship.com/what-are-4rs
[156]武希彦. 我国磷肥工业的现状及展望. 磷肥与复肥, 2001,16(1): 1-4.
Wu X Y. The present status & prospects of phosphate fertilizer industry in China. Phosphate & Compound Fertilizer, 2001,16(1): 1-4. (in Chinese)
[157]夏举佩, 任雪娇, 李国斌, 苏毅, 晁静霞. 钾长石-硫酸钙-氧化钙热反应制备可溶性钾机理研究. 北京工业大学学报, 2014, 40(11): 1735-1740.
Xia J P, Ren X J, Li G B, Su Y, Zhao J X. Mechanism study on the preparation of soluble potassium from K-feldspar-CaSO4 -CaO thermal system. Journal of Beijing University of Technology, 2014, 40(11): 1735-1740. (in Chinese)
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[9] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[10] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[11] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[12] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[13] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[14] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[15] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!