Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (12): 2313-2325.doi: 10.3864/j.issn.0578-1752.2014.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Difference of Yield and Its Formation Mechanism of Indica-Japanica Inter-Subspecific Hybrid Rice with Different Canopy Leaf Types

 JIANG  Yuan-Hua, ZHANG  Hong-Cheng, WEI  Hai-He, ZHAO  Ke, XU  Jun-Wei, DAI  Qi-Gen, HUO  Zhong-Yang, XU  Ke, WEI  Hai-Yan, GUO  Bao-Wei   

  1. College of Agriculture, Yangzhou University/Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, Jiangsu
  • Received:2013-09-18 Online:2014-06-15 Published:2013-12-18

Abstract: 【Objective】The objective of this study was to reveal the difference of grain yield and its formation mechanism between clown leaf moderate type(CLMT) and clown leaf long type(CLLT) of Yongyou series of indica-japonica-hybrid-rice under the super high yield cultivation conditions. 【Method】 A field experiment was conducted with CLMT combination such as A26/F9250, A16/F9250, Yongyou 12, Yongyou 13 and CLLT combination such as A43/F8585, A41/ F8585, Yongyou 15, Yongyou 11 as materials in rice-wheat cropping areas (Yangzhou, Changshu of Jiangsu) in the lower reaches of the Yangtze River in 2011-2012. Difference in grain yield, the sink structure, stem and sheath material accumulation and transfer, photosynthetic characteristics and superior and inferior grain-filling characteristics between CLMT and CLLT of indica-japonica hybrid rice were analyzed systematically. 【Result】 Under the super high yield cultivation conditions, the grain yield of CLMT was significantly higher than that of CLLT, the yields of CLMT were 11.62 t•hm-2(Changshu, 2011), 11.98 t•hm-2(Yangzhou, 2011), 12.51 t•hm-2(Changshu, 2011), and 12.30 t•hm-2(Yangzhou, 2011), and were 8.85%, 9.75%, 9.60%, and 10.26% higher than those of CLLT, respectively. Effective panicles, effective spikelets per panicle, total spikelets of the CLMT were higher than those of CLLT. Total sink weight of CLMT was equal with CLLT, while 1000- grain weight, filling index of the CLMT were lower than those of CLLT. It was indicated that the increasement of filling index was the key point of higher yield of CLMT. Stem and sheath weight at heading and milky stages, stem and sheath apparent output, apparent output rate, apparent transfer rate from heading to maturity of CLMT were lower than that of CLLT, but stem and sheath weight in maturity, the maximum output, the maximum output rate, maximum transport rate from heading to milk stage of CLMT was higher than those of CLLT. It was found that translocation mechanism of stem and sheath of CLMT was more reasonable than those of CLLT. Leaf area index of CLMT was lower than that of CLLT at heading stage, and equal to that of CLLT at milk stage, and higher than that of CLLT at maturity . Photosynthetic rate of flag leaf of CLMT was equal to that of CLLT at heading and milk stages, and was higher than that of CLLT at maturity stage. Leaf area duration of CLMT was equal to that of CLLT from heading stage to milk stage and was higher than that of CLLT from milky stage to maturity stage. The decreasing rate of leaf area and photosynthetic rate of CLMT were lower than those of CLLT both from heading to milk stage and from milk stage to maturity. It was indicated that CLMT had photosynthetic production advantages during the late solid phase. For superior grain, initial growth power (Ro), time of the relative maximum grain filling rate (Tmax), active grain filling period (D) and effective filling time (T99) of CLMT were higher or longer than those of CLLT, while the relative maximum grain filling rate (RGRmax), the relative average grain filling rate (RGRmean) in superior grain of CLMT were lower slightly than those of CLLT. For inferior grain, RO of CLMT was lower than that of CLLT, while Tmax, D, T99, RGRmax, RGRmean of CLMT were longer or higher than those of CLLT. Both for superior grain and for inferior grain, the grain filling rate of CLMT was higher than those of CLLT. 【Conclusion】Under the mechanized and simplified super high cultivation conditions, there was no big difference in total sink weight between CLMT and CLLT, but matter translocation of stem and sheath at early grain filling stage, photosynthetic characteristics at later grain filling stage of CLMT were higher than that of CLLT, therefore,the grain filling rate and yield of CLMT were higher than that of CLLT. Reasonable stem sheath matter transport mechanism, strong photosynthetic production performance and gentle lasting filling characteristics were the mainly physiological basis of the formation of the yield advantage.

Key words: intersubspecific hybrid rice , crown leaf moderate , crown leaf long type , yield , formation mechanism

[1]FAO. Statistical databases. Food and Agriculture Organization (FAO) of the United Nations, 2004.

[2]Peng S, Gassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. Crop Science, 1999, 39(6): 1552-1559.

[3]袁隆平, 武小金, 颜应成, 罗孝和. 水稻广谱广亲和系的选育策略. 中国农业科学, 1997, 30(4): 1-8.

Yuan L P, Wu X J, Yan Y C, Luo X H. A strategy for developing wide spectrum compatibility rice line. Scientia Agricultura Sinica, 1997, 30(4): 1-8. (in Chinese)

[4]Li R H, Jiang T B, Xu C G, Li X H, Wang X K. Relationship between morphological and genetic differentiation in rice (Oryza sativa L.). Euphytica, 2000, 114: 1-8.

[5]Ikehashi H, Araki H. Varietal screening for compatibility types revealed in Fl fertility of distant crosses in rice. Japan Journal of Breed, 1984, 34: 304-312.

[6]张桂权, 卢永根. 粳型亲籼系的选育及其在杂交水稻超高产育种上的利用. 杂交水稻, 1999, 14(6): 3-6.

Zhang G Q, Lu Y G. Breeding of the indica-compatible japonica lines and their use in the breeding of super high yield hybrid rice. Hybrid Rice, 1999, 14(6): 3-6. (in Chinese)

[7]杨振玉. 亚种间杂种优势利用的设想与实践. 杂交水稻, 1993(3): 1-2.

Yang Z Y. Idea and practice of utilization of heterosis between rice subspecies. Hybrid Rice, 1993(3): 1-2. (in Chinese)

[8]汤述翥, 朱满山, 张亚东, 亚长杰, 顾铭洪. 三系法水稻亚种间杂种优势利用途径的研究. 扬州大学学报: 农业与生命科学版, 2002, 23(2): 36-40.

Tang S Z, Zhu M S, Zhang Y D, Yan C J, Gu M H. Investigation on the ways to utilize the heterosis between indica and japonica rice with three lines. Journal of Yangzhou University: Agricultural and Life Sciences Edition, 2002, 23(2): 36-40. (in Chinese)

[9]沈圣泉, 张仁华. 02428A和热研1 号A 在粳不籼恢配组中若干问题探讨. 浙江农业学报, 2001, 13(6) : 347-351.

Shen S Q, Zhang R H. Discussion of some problems in japonica-indica crossing type using wide compatible CMS lines 02428A and Reyan 1A. Acta Agriculturae Zhejiangensis, 2001, 13(6): 347-351. (in Chinese)

[10]朱庆森, 张祖建, 杨建昌. 亚种间杂交稻产量源库特征. 中国农业科学, 1997(3): 52-59.

Zhu Q S, Zhang Z J, Yang J C. Source-sink characterist ics related to the yield in int erspecific hybrid rice. Scientia Agricultura Sinica, 1997(3): 52-59. (in Chinese)

[11]杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转研究. 作物学报, 1997, 23(1): 83-87.

Yang J C, Zhu Q S, Wang Z Q, Lang Y Z. Photosynthetic characteristics dry matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agronomica Sinica, 1997, 23(1): 83-87. (in Chinese)

[12]杨建昌, 苏宝林, 王志琴, 郎有忠, 朱庆森. 亚种间杂交稻籽粒灌浆特征及其生理的研究. 作物学报, 1998, 31(1): 7-14.

Yang J C, Su B L, Wang Z Q, Lang Y Z, Zhu Q S. Charcteristics and physiology of grain-filling in intersubspecific hybrid rice. Scientia Agricultura Sinica, 1998, 31(1): 7-14. (in Chinese)

[13]程式华, 翟虎渠. 水稻亚种间超高产杂交组合若干株型因子的比较. 作物学报, 2000, 26(6): 714-718.

Cheng S H, Zai H Q. Comparison of some plant type components in super high-yielding hybrids of inter-subspecies rice. Acta Agronomica Sinica, 2000, 26(6): 714-718. (in Chinese)

[14]李合松, 黄剑良, 陈开铁, 邹应斌, 萧光玉, 余铁桥. 两系法亚种间杂交稻氮素营养与物质生产关系的研究. 湖南农学院学报, 1993, 19(6): 533-539.

Li H S, Huang J L, Chen K T, Zou Y B, Xiao G Y, Yu T Q. Relationship between nitrogen nutrition of two-line hybrid rice subspecies and dry matter production. Journal of Hunan Agricultural College, 1993, 19(6): 533-539. (in Chinese)

[15]沈波, 王熹. 两个亚种间杂交稻组合的根系生理活性. 中国水稻科学, 2002, 16(2): 146-150.

Shen B, Wang X. Physiological Activities of root system in two inter-subspecific hybrid rice combinations. Chinese Journal of Rice Science, 2002, 16(2): 146-150. (in Chinese)

[16]付景, 杨建昌. 超级稻高产栽培生理研究进展. 中国水稻科学, 2011, 25(4): 343-348.

Fu J, Yang J C. Research advances in physiology of super rice under high-yielding cultivation. Chinese Journal of Rice Science, 2011, 25(4): 343-348. (in Chinese)

[17]龚金龙, 张洪程, 李杰, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 李邴维, 沙安勤, 周有炎, 罗学超, 刘国林. 超级稻生态育种及超高产栽培特征与途径的研究进展. 中国农业科技导报, 2011, 13(1): 25-33.

Gong J L, Zhang H C, Li J, Chang Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Li B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Research progress on ecological breeding and cultivation characteristics of super rice and approaches of super high yield. Journal of Agricultural Science and Technology, 2011, 13(1): 25-33. (in Chinese)

[18]马荣荣, 许德海, 王晓燕, 禹盛苗, 金千瑜, 欧阳由男, 朱练峰. 籼粳亚种间杂交稻甬优6 号超高产株形特征与竞争优势分析. 中国水稻科学, 2007, 21(3): 281-286.

Ma R R, Xu D H, Wang X Y, Yu S M, Jian Q Y, Ou-yang Y N, Zhu L F. Heterosis on plant morphology of yongyou6, an indica japonica Iner subspecific super high yielding hybrid rice. Chinese Journal of Rice Science, 2007, 21(3): 281-286. (in Chinese)

[19]许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2007, 21(3): 281- 286.

Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-yang Y N, Jin Q Y, Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice yongyou6. Scientia Agricultura Sinica, 2007, 21(3): 281-286. (in Chinese)

[20]陈温福, 徐正进, 张龙步, 杨守仁. 不同株型粳稻品种的冠层特征和物质生产关系的研究. 中国水稻科学, 1991, 5(2): 67-71.

Chen W F, Xu Z J, Zhang L B, Yang S R. Studies on canopy properties and its relation to dry matter production in japonica rice varieties with different plant types. Chinese Journal of Rice Science, 1991, 5(2): 67-71. (in Chinese)

[21]刘贞琦. 不同株型水稻光合特性的研究. 中国农业科学, 1980(3): 6-10.

Liu Z C. A Study on the photosynthetic characters of different plant types of rice. Scientia Agricultura Sinica, 1980(3): 6-10. (in Chinese)

[22]吕川根, 谷福林, 邹江石, 陆曼丽. 水稻理想株型品种的生产潜力及其相关特性研究. 中国农业科学, 1991, 24(5): 15-22.

Lv C G, Gu F L, Zou J S, Lu M L. Studies on yielding potential and related characteristics of rice ideotype. Scientia Agricultura Sinica, 1991, 24(5): 15-22. (in Chinese)

[23]张洪程, 吴桂成, 李德剑, 肖跃成, 龚金龙, 李杰, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 周有炎, 王宝金, 吴爱国. 杂交粳稻13.5 t?hm−2 超高产群体动态特征及形成机制的探讨. 作物学报, 2010, 36(9): 1547-1558.

Zhang H C, Wu G C, Li D J, Xiao Y C, Gong J L, Li J, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Zhou Y Y, Wang B J, Wu A G. Population characteristics and formation mechanism for super- high-yielding hybrid japonica rice (13.5 t?ha-1). Acta Agronomica Sinica, 2010, 36(9): 1547-1558. (in Chinese)

[24]杜永, 王艳, 王学红, 孙乃立, 杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析. 作物学报, 2007, 33(7): 1079-1085.

Du Y, Wang Y, Wang X H, Sun N L, Yang J C. Comparisons of plant type, grain yield, and quality of different japonica rice cultivars in huang he-huaihe river area. Acta Agronomica Sinica, 2007, 33(7): 1079-1085. (in Chinese)

[25]吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43(2): 266-276.

Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y B, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Scientia Agricultura Sinica, 2010, 43(2): 266-276. (in Chinese)

[26]吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许珂. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007, 40(2): 250-257.

Wu W G, Zhang H C, Wu G C, Zhai C Q, Qian Y F, Chen Y, Xu J, DAI Q G, Xu K. Preliminary study on super rice population sink characters. Scientia Agricultura Sinica, 2007, 40(2): 250-257. (in Chinese)

[27]龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2013, 46(4): 686-704.

Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Scientia Agricultura Sinica, 2013, 46(4): 686-704. (in Chinese)

[28]Sheehy J E, Dionora M JA, Mitchell P L. Spikelet numbers sink size and potential yield in rice. Field Crops Research, 2001, 7: 77-85.

[29]凌启鸿, 陆卫平, 蔡建中, 曹显祖. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15(2): 124-131.

Ling Q H, Lu W P, Cai J Z, Cao X Z. The relationship between root distribution and leaf angle in rice plant. Acta Agronomica Sinica, 1989, 15(2): 124-131. (in Chinese)

[30]Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthes is in grains of wheat. Plant Physiology, 1999, 121: 871-878.

[31]Inoue T, Iuanaga S, Suginoto Y. Contribution of per-anthesis is assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soilmoisture. Photosynthetica, 2004, 42(1): 99-104.

[32]顾自奋, 朱庆森, 曹显祖. 水稻结实率的研究. 中国农业科学, 1981(6) : 38-44.

Gu Z F, Zhu Q S, Cao X Z. Studies on the grain ripenning rate of rice. Scientia Agricultura Sinica, 1981(6): 38-44. (in Chinese)

[33]Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian Journal of Plant Physiology, 1993, 20: 231-242.

[34]Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regular, 2000, 30: 261-270.

[35]杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36(12): 2011-2019.

Yang J C. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agronomica Sinica, 2010, 36(12): 2011-2019. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!