Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (9): 1743-1753.doi: 10.3864/j.issn.0578-1752.2014.09.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Nodule Characteristics and Nitrogen Fixation of Soybean in Maize-Soybean Relay Strip Intercropping

 YU  Xiao-Bo-1, 2 , SU  Ben-Ying-1, GONG  Wan-Zhuo-1, LUO  Ling-1, LIU  Wei-Guo-1, YANG  Wen-Yu-1, ZHANG  Ming-Rong-2, WU  Hai-Ying-2, ZENG  Xian-Tang-3   

  1. 1、College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Ya’an 625014, Sichuan;
    2、Nanchong Institute of Agricultural Sciences, Nanchong 637000, Sichuan;
    3、Nanchong Bureau of Agriculture & Animal Husbandry, Nanchong 637000, Sichuan
  • Received:2013-11-13 Online:2014-05-01 Published:2014-03-30

Abstract: 【Objective】Shoot and root biomass, nodule characteristics, nitrogenase reductive ability and ureide content were studied to investigate the biological nitrogen fixation of soybean under relay-intercropping system.【Method】Three varieties, super-nodulating mutant NTS1007, BRAGG and ND12, were used in this field experiment to investigate the growth characteristics of root nodule, nodule nitrogenase reductive ability and ureide content of plant as well as root and shoot biomass accumulation. 【Result】Compared with monoculture, the results showed that root and shoot biomass decreased significantly in relay strip intercropping system. Nodule biomass was regulated by shoot and root, however, nodule number was correlated with the root biomass. The decreasing amplitude of root biomass (33.15%) was higher than that of shoot (20.84%) in relay strip intercropping system, as a result , the root/shoot ratio was decreased significantly. Furthermore, the nodule nitrogenase reductive ability and the ureide content of plant were also decreased significantly. Compared with monoculture, nitrogenase ability per plant and per weight all decreased, and the declining speed was slower after peak value. The fastest increasing stage of nitrogenase ability per plant came later. Among the three soybean varieties, NTS1007 (52.42%) had a bigger decreasing amplitude in nodule number than others, BRAGG had the biggest decreasing amplitude in root biomass, shoot biomass and nodule weight (37.73%, 31.28%, 43.25%). In maize-soybean relay strip intercropping system, NTS1007 had the biggest decreasing amplitude in nitrogenase activity per plant and ureide content per weight (64.41%, 21.72%), as well as the nitrogenase activity per weight of BRAGG (21.46%), nitrogenase activity and ureide content per plant of ND12 was higher than that of NTS1007 and BRAGG, but the decreasing amplitude compared to monoculture was the lowest among the three soybean varieties (10.01%, 45.81%, 17.88%).【Conclusion】In relay strip intercropping system, shoot biomass, root biomass and root/shoot ratio decreased significantly, as well as the nodule number and nitrogenase ability. The declining speed of nitrogen fixing ability was slower, and this will be favorable to protein accumulation. The decreasing amplitude was different among the three soybean varieties. The biomass accumulation and nodule formation of super-nodulating mutant NTS1007 were sensitive to relay strip intercropping system, but ND12 showed a better adaptability.

Key words: soybean , relay strip intercropping , nodule , nitrogenase , ureide

[1]Thrupp L A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs, 2000, 76(2): 265-281.

[2]Szumigalski A R, Van Acker R C. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agronomy Journal, 2006, 98(4): 1030-1040.

[3]Gao Y, Duan A W, Qiu X Q, Liu Z G, Sun J S, Zhang J P, Wang H Z. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 2010, 98(1): 199-212.

[4]Shennan C. Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1492): 717-739.

[5]叶优良, 孙建好, 李隆, 张福锁. 小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响, 农业工程学报, 2005, 21(11): 33-37.

Ye Y L, Sun J H, Li L, Zhang F S. Effect of wheat/maize intercropping on plant nitrogen uptake and soil nitrate nitrogen concentration. Transactions of the CSAE, 2005, 21(11): 33-37. (in Chinese)

[6]雍太文, 杨文钰, 任万军, 樊高琼, 牟锦毅. 发展套作大豆, 促进四川大豆产业发展. 作物杂志, 2007, 6: 5-8.

Yong T W, Yang W Y, Ren W J, Fan G Q, Mu J Y. Develop realy-planting soybean, promote soybean industry of Sichuan. Crop Science, 2007, 6: 5-8. (in Chinese)

[7]杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰. 发展玉米套种大豆, 振兴大豆产业. 大豆科学, 2008, 27(1): 1-7.

Yang W Y, Yong T W, Ren W J, Fan G Q, Mu J Y, Lu X L. Develop realy-planting soybean, revitalize soybean industry. Soybean Science, 2008, 27(1): 1-7. (in Chinese)

[8]McClure P R, Israel D W. Transport of nitrogen in the xylem of soybean plants. Plant Physiology, 1979, 64(3): 411-416.

[9]Kouchi H, Yoneyama T. Dynamics of carbon photosynthetically assimilated in nodulated soya plants grown under steady state conditions. Annals Botany of Company, 1984, 53(6):883-896.

[10]房春红, 陈秀双, 刘杰, 许修宏. 大豆固氮酶活性与酰脲含量的关系. 东北农业大学学报, 2008, 39(3): 9-12.

Fang C H, Chen X S, Liu J, Xu X J. Relation between ureide content and nitrogenase activity in soybean. Journal of Northeast Agricultural University, 2008, 39(3): 9-12. (in Chinese)

[11]刘业丽, 孙聪姝, 刘丽君, 陈丽华, 祖伟. 不同基因型大豆植株酰脲含量的动态规律, 东北农业大学学报, 2007, 38(1): 5-8.

Liu Y L, Sun C S, Liu Y L, Chen L H, Zu W. Study on dynamic regulation of ureides content in soybean plants among different genotypes. Journal of Northeast Agricultural University, 2007, 38(1): 5-8. (in Chinese)

[12]宋海星, 王萍, 申斯乐, 闫石, 陶丹, 冉彦中. 大豆共生固氮与叶片全氮含量之间关系的研究. 吉林农业科学, 2000, 25(6): 9-11.

Song H X, Wang P, Shen S L, Yan S, Tao D, Ran Y Z. Study on the ralations between commensally nitrogen fixation and the total nitrogen content of leaves in soybean. Journal of Jilin Agricultural Sciences, 2000, 25(6): 9-11. (in Chinese)

[13]董守坤, 马春梅, 李姚, 金喜军, 龚振平. 大豆植株中酰脲含量变化动态研究. 东北农业大学学报, 2005, 36(5): 549-552.

Dong S K, Ma C M, Li Y, Jin X J, Gong Z P. Study on the change of ureides content in soybean plant. Journal of Northeast Agricultural University, 2005, 36(5): 549-552. (in Chinese)

[14]Ofosu-Budu G K, Sumiyoshi D, Matsuura H, Fujita K. Significance of soil N on dry matter production and N balance in soybean/sorghum mixed cropping system. Soil Science and Plant Nutrition, 1993, 39(1): 33-42.

[15]Tobita S, Ito R, Matsunaga T, Rao T P, Rego T J, Johansen C, Yoneyama T. Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics. Biology Fertility Soil, 1994, 17(4): 241-248.

[16]左元梅, 刘永秀, 张福锁. 玉米/花生混作改善花生铁营养对花生碳氮代谢及固氮的影响. 生态学报, 2004, 24(11): 2584-2590.

Zuo Y M, Liu Y X, Zhang F S. Effects of improved iron nutrition of peanut intercropped with maize on carbon and nitrogen metabolism and nitrogen-fixing of peanut nodule. Acta Ecologica Sinica, 2004(11): 2584-2590. (in Chinese)

[17]房增国, 左元梅, 李隆, 张福锁. 玉米-花生混作体系中不同施氮水平对花生铁营养及固氮的影响. 植物营养与肥料学报, 2004, 10(4): 386-390.

Fang Z G, Zuo Y M, Li L, Zhang F S. Effects of different nitrogen levels on iron nutrition and nitrogen fixation of peanut in maize-peanut mixed cropping system. Plant Nutrition and Fertilizer Science, 2004,10(4): 386-390. (in Chinese)

[18]范淑琴, 梁淑文. 现代植物生理学实验指南. 北京: 科学出版社, 1999: 174-175.

Fan S Q, Liang S W. Experiment Instruction of Modern Plant Physiology, Beijing: Science Press, 1999: 174-176. (in Chinese)

[19]徐志伟, 刘承宪. 豆科植物中酰脲含量的测定. 植物生理学通讯, 1986, 4: 60-62.

Xu Z W, Liu C X. Measurement of ureides from legume tissue. Plant Physiology Communications, 1986, 4: 60-62. (in Chinese)

[20]Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Genetics, 1998, 32(1): 33-57.

[21]周相娟, 梁宇, 沈世华, 荆玉祥. 接种根瘤菌和遮光对大豆固氮和光合作用的影响. 中国农业科学, 2007, 40(3): 478-484.

Zhou X J, Liang Y, Shen S H, Jing Y X. Effects of rhizobial inoculation and shading on nitrogen fixation and photosynthesis of soybean. Scientia Agricultura Sinica, 2007, 40(3): 478-484. (in Chinese)

[22]王晓云, 夏明忠, 华劲松. 不同时期遮光对蚕豆根瘤生长及产量的影响. 西昌学院学报, 2007, 21(2): 28-31.

Wang X Y, Xia M Z, Hua J S. Effects of shading at different growth stages on nodule and grain yield in faba bean. Journal of Xichang College, 2007, 21(2): 28-31. (in Chinese)

[23]王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19(2): 329-323.

Wang Z, Yang W Y, Wu X Y, Wu Q L. Effects of maize plant type and planting width on the early morphological characters and yield of relayplanted soybean. Chinese Journal of Applied Ecology, 2008, 19(2):323-329. (in Chinese)

[24]刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33(2): 141-146.

Liu W G, Jiang T, She Y H, Yang F, Yang W Y. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage. Chinese Journal of Soil Crop Science, 2011, 33(2): 141-146.(in Chinese)

[25]Sayuri I, Norikuni O, Kuni S. Allocation of photosynthetic products in soybean during the early stages of nodule formation. Soil Science and Plant Nutrition, 2006, 52(4): 438-443.

[26]Bourion V, Laguerre G, Depret G, Vosin A S, Salon C, Duc G. Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Annals Botany, 2007, 100(3): 589-598.

[27]Voisin A S, Munier-Jolain N G, Salon C. The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil, 2010, 337(1): 399-412.

[28]Carroll B J, McNeil D L, Gresshoff P M. Isolation and properties of soybean mutants that nodulate in the presence of high nitrate concentrations. Proceeding of National Academy of Sciences of the USA, 1985, 82(12): 4162-4166.

[29]Sprent J I, Stephens J H, Rupela O P. Environmental effects on nitrogen fixation. World Crops: Cool Season Food Legumes, 1988, 5: 801-810.

[30]Voisin A S, Salon C, Jeudy C, Warembourg F R. Seasonal patterns of 13C partitionning between shoot and nodulated roots of N2- or nitrate fed- Pisum sativum L. Annals Botany, 2003, 91(5): 539-546.

[31]宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵. 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. 中国油料作物学报, 2009, 31(4): 474-479.

Song Y X, Yang W Y, Li Z X, Yu X B, Guo K, Xiang D B. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chinese Journal of Soil Crop Science, 2009, 31(4): 474-479. (in Chinese)

[32]Atkins C A, Fernando M, Hunt S, Layzell D B. A metabolic connection between nitrogenase activity and the synthesis of ureides in nodulated soybean. Physiologia Plantarum, 1992, 84(3): 441-447.

[33]Mastrodomenico A T, Purcell L C, King C A. The response and recovery of nitrogen fixation activity in soybean to water deficit at different reproductive developmental stages. Enviromental and Experimental Botany, 2013, 85: 16-21.

[34]Gil-Quintana E, Larrainza E, Seminario A, Diaz-Leal J L, Alamillo J M, Pineda M, Arrese-lgor C, Wienkoop S, Gonzalez E M. Local inhibition of nitrogen fixation and nodule metabolism in drought- stressed soybean. Journal of Experimental Botany, 2013, 64(8): 2172-2182.

[35]Jung G,, Toshinori M, Yukihiko O, Makie K. Effects of waterlogging on nitrogen fixation and photosynthesis in supernodulating soybean cultivar Kanto 100. Plant Production Science, 2008, 11(3): 291-297.

[36]Imsande J, Touraine B N. Demand and the regulation of nitrate uptake. Plant Physiology, 1994, 105: 3-7.

[37]金喜军, 马春梅, 龚振平, 姚玉波, 邸伟. 大豆鼓粒期对肥料氮的吸收与分配研究. 植物营养与肥料学报, 2010, 16(2): 395-399.

 

Jin X J, Ma C M, Gong Z P, Yao Y B, Di W. Study on fertilizer-N absorption and distribution of soybean during the seed-filling period. Plant Nutrition and Fertilizer Science, 2010, 16(2): 395-399. (in Chinese)

[38]邸伟, 金喜军, 马春梅, 龚振平, 董守坤, 张磊. 施氮水平对大豆氮素积累与产量影响的研究, 核农学报, 2010, 24(3): 612-617. 

Di W, Jin X J, Ma C M, Gong Z P, Dong S K, Zhang L. Effects of nitrogen application on yield and nitrogen accumulation in soybean. Journal of Nuclear Agricultural Sciences, 2010, 24(3): 612-617. (in Chinese) 

[39]Gadimov A G, Safaraliev P M. Change in nitrogen status of soybean under influence of symbiotically fixed and bound nitrogen. Turkish Journal of Agriculture and Forestry, 1999, 23: 389-392.

[40]Mengel R. Symbiotic dinitrogen fixation-its dependence on plant nutrition and its ecophysiological impact. Zeitschrift für Pflanzenernährung und Bodenkunde, 1994, 157(3): 233-241.

[41]Sato T, Onoma N, Fujikake H. Changes in four leghemoglobin components in nodules of hypernodulating soybean (Glycine max Merr.) mutant and its parent in the early nodule developmental stage. Plant Soil, 2001, 237(1): 129-135.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!