Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (8): 1550-1557.doi: 10.3864/j.issn.0578-1752.2014.08.011

• HORTICULTURE • Previous Articles     Next Articles

Molecular Mapping and Candidate Gene Analysis for Heavy Netting Gene (H) of Mature Fruit of Cucumber (Cucumis sativus L.)

 WANG  Min-1, GU  Xing-Fang-1, MIAO  Han-1, LIU  Shu-Lin-1, WANG  Ye-1, ToddC.Wehner2 , ZHANG  Sheng-Ping-1   

  1. 1、Institute of Vegetables and Flowers of Chinese Academy of Agricultural Sciences, Beijing 100081;
    2、Department of Horticulture Science, North Carolina State University, Raleigh, NC 27695-7609, USA
  • Received:2013-11-20 Online:2014-04-15 Published:2014-02-11

Abstract: 【Objective】 Heavy netting of mature fruit is one of the important phenotypes of cucumber. Molecular mapping and candidate gene analysis for this trait will provide a theoretical basis for improvement of fruit traits. It also can lay a good foundation for fine mapping and gene cloning. 【Method】 Cucumber inbred lines PI205996(P1) without heavy netting mature fruit and PI263079 (P2) with heavy netting mature fruit were used as the experiment materials for genetic analysis and gene mapping in this study. Bulked segregation analysis (BSA) was performed in the F2 population with 230 individuals using 2 112 SSR markers. The sequence and re-sequencing information of 9 930 and 115 core germplasms were used to develop new SSR markers in the primary mapping region of the heavy netting gene by Primer 6.0. JoinMap 4.0 and MapInspect softwares were employed to construct a SSR linkage map for the gene. Bioinformatics analysis was conducted to detect candidate genes. 【Result】 Genetic analysis showed that a single dominant nuclear gene (H) controlled the heavy netting of mature fruit trait in PI263079. There were 255 of 2 112 SSR primers showed polymorphism in the parent lines and the polymorphic rate was 12.1%. Using the 255 polymorphic markers, the DNA of seven individuals with heavy netting fruit and seven individuals without heavy netting fruit was analyzed. Nine SSR markers on cucumber chromosome 5 were identified to be linked with the H gene. Flanking markers SSR13006 and CSWCT-17 were 3.6 and 8.2 cM away from the H gene, respectively. A total of 97 pairs of new SSR primers were developed based on the sequence information in the primary mapping region of the H gene. And only four polymorphic markers were detected between the parent lines with the polymorphic rate of 4.1%. Finally, 13 SSR markers were identified to be linked with the H gene after analysis of the F2 mapping population using the four new developed molecular markers. Flanking markers SSR13006 and SSR-90 were 3.6 and 1.7 cM away from the H gene, respectively. The physical distance between SSR13006 and SSRH-90 was 297.7 kb containing 29 predicted genes. Csa5G591790 was speculated as a possible candidate gene. 【Conclusion】 The heavy netting of mature fruit trait of PI263079 was controlled by one dominant nuclear gene (H). It was located on the Chr.5 of cucumber delimited in a physical distance of 297.7 Kb. The results in this study will be of great benefit to fine mapping and gene cloning for the H gene and MAS of heavy netting of mature fruit.

Key words: Cucumis sativus L. , heavy netting of mature fruit , SSR marker , gene mapping , candidate gene

[1]孙晓丹, 商庆梅, 秦智伟. 黄瓜嫩果白色果皮颜色遗传规律及其AFLP标记研究. 北方园艺, 2011, 3: 135-140.

Sun X D, Shang Q M, Qin Z W. Inheredity of white skin color cucumber immature fruit and AFLP analysis. North Horticulture, 2011, 3: 135-140. (in Chinese)

[2]董邵云, 苗晗, 张圣平, 刘苗苗, 王烨, 顾兴芳. 黄瓜白色果皮基因遗传规律及基因定位.西北植物学报, 2012, 32 (11): 2177-2181.

Dong S Y, Miao H, Zhang S P, Liu M M, Wang Y, Gu X F. Genetic analysis and gene mapping of white fruit skin in cucumber(Cucumis sativus L.). Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2177-2181. (in Chinese)

[3]Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng Y Q, Gu X F. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica , 2011, 182: 167-176.

[4]董邵云, 苗晗, 张圣平, 王烨, 王敏, 刘书林, 顾兴芳. 黄瓜果皮光泽性状的遗传分析及基因定位研究. 园艺学报, 2013,  40 (2): 247-254.

Dong S Y, Miao H, Zhang S P, Wang Y, Wang M, Liu S L, Gu X F. Genetic analysis and gene mapping of glossy fruit skin in cucumber. Acta Horticulturae Sinica, 2013, 40 (2): 247-254. (in Chinese)

[5]Wei-Wei Zhang, Jun-Song Pan, Huan-Le He , Chi Zhang, Zheng Li, Jun-Long Zhao, Xiao- Jun Yuan, Li-Huang Zhu, San-Wen Huang, Run Cai. Construction of a high density integrated genetic map for cucumber(Cucumis sativus L.). Theoretical and Applied Genetics, 2012, 124: 249-259.

[6]Xuqin Yang, Yue Li , Huanle He , Beibei Bie , Guoliang Ren , Junlong Zhao, Yunli Wang, Jingtao Nie, Junsong Pan, Run Cai. Fine mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L.). Molecular Breeding, 2013, Online: DOI 10.1007/ s11032-013-9927-8

[7]Zhang S P, Miao H, Sun R F, Wang X W, Huang S W, Wehner T C, and Gu X F. Localization of a new gene for bitterness in cucumber. Journal of Heredity, 2013, 104(1): 134-139 .

[8]Bo K L, Song H, Shen J, Qian C T, Staub J E, Simon P W, Lou Q F, Chen J F. Inheritance and mapping of the ore gene controlling the quantity of b-carotene in cucumber (Cucumis sativus L.). Molecular Breeding, 2012, 30: 335-344.

[9]Li Y, Wen C, Weng Y. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theoretical and Applied Genetics, 2013, 126: 2187-2196.

[10]郁映君,司龙亭. 黄瓜瓜刺颜色与性型遗传规律的研究. 沈阳农业大学学报, 2010, 41 (2): 152-155. 

Yu Y J, Si L T. 2010. Inheritance of the spine color and sex expression in cucumber. Journal of Shenyang Agricultural University, 2010, 41(2): 152-155. (in Chinese)

[11]S. Alan Walters, Nischit V. Shetty, Todd C. Wehner. Segregation and linkage of several genes in cucumber. Journal of the American Society for Horticultural Science. 2001, 126(4): 442-450.

[12]Kennard W C, Poetter K, Dijkhuizen A, Meglic V, Staub J E, Havev  J. Linkage among RFLP, RAPD, isozyme, disease-resistance and morphological markers in narrow and wide crosses of cucumber. Theoretical and Applied Genetics, 1994, 89: 42-48

[13]Heang D, Sato H, Sassa H, Koba T. Detection of two QTLs for fruit weight in cucumber(Cucumis sativus L.). Proceedings of the IX th EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France), 2008, 5: 511-514.

[14]杨双娟, 苗晗, 张圣平, 程周超, 周健, 董邵云, Wehner T C, 顾兴芳. 黄瓜无毛基因gl-2的遗传分析和定位.园艺学报, 2011, 38 (9): 1685-1692.

Yang S J, Miao H, Zhang S P, Cheng Z C, Zhou J, Dong S Y, Wehner T C, Gu X F. Genetic analysis and mapping of gl-2 gene in cucumber(Cucumis sativus L.). Acta Horticulturae Sinica, 2011, 38(9): 1685-1692. (in Chinese)

[15]Zhang W W, He H, Yuan G, Du H, Yuan L H, Li Z, Yao D Q, Pan J S, Cai R. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2010, 120(3): 645-654.

[16]Tkachenko, N. N. Preliminary results of a genetic investigation of the cucumber, Cucumis sativus L. Bull. Applied Plant Breeding, Ser. 2, 1935(9): 311-356.

[17]Hutchins, A. E. Inheritance in the cucumber. Journal of Agricultural Research, 1940, 60: 117-128.

[18]苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 程周超, 张若纬, 穆生奇, 李曼, 张振贤, 方智远. 黄瓜果实相关性状QTL定位分析.中国农业科学, 2011, 44(24): 5031-5040.

Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y, Cheng Z C, Zhang R W, Mu S Q, Li M, Zhang Z X, Fang Z Y. Mapping QTLs for fruit-associated traits in Cucumis sativus L.. Scientia Aguricultura Sinica, 2011, 44(24): 5031-5040. (in Chinese)

[19]王志坤, 秦智伟, 周秀艳. 黄瓜果实成熟衰老过程中几种物质的变化. 中国蔬菜, 2010, 12: 41-45.

Wang Z K,Qin Z W, Zhou X Y. Changes of several substances during ripening and senescence process of cucumber fruit. Chinese Vegetables, 2010, 12: 41-45. (in Chinese)

[20]李艳秋, 王志坤, 秦智伟, 周秀艳.活体黄瓜成熟衰老过程中的几种生理生化指标变化. 植物生理学通讯, 2006, 42(4): 671-673.

Li YQ, Wang Z K, Qin Z W, Zhou XYan. Changes in several physiological and biochemical indexes of cucumber fruit in vivo during senescence. Chinese Bulletin of Botany, 2006, 42(4): 671-673.(in Chinese)

[21]宋德颖, 秦智伟, 王志坤, 卢京国. 两品种黄瓜果实发育过程中脂氧合酶的活性变化比较.植物生理学通讯, 2007, 43(4): 716.

Song D J, Qin Z W, Wang Z K, Lu J G. The comparison of lipoxygenase activity in the process of fruit growth for two varieties of cucumber. Plant Physiology Communications, 2007, 43(4): 716. (in Chinese)

[22]Ren Y, Zhang Z H, Liu J H, Staub J E, Han Y H, Cheng Z H, Li X F, Miao H, Kang H X, Xie B Y, Gu X F, Wang X W, Du Y C, Jin W W, Huang S W. An integrated genetic and cytogenetic map of the cucumber genome. Plos One, 2009, 4(6): 5795.

[23]Webster B D, Graig M E.Characteristics of the surface of muskmelon. Journal of the American Society for Horticultural Science, 1976, 101: 412-415.

[24]Keren-Keiserman A, Tanami Z, Shoseyov O, Ginzberg I. Peroxidase activity associated with suberization process of the muskmelon (Cucumis melon) rind. Physiology Plant, 2004, 121: 141-148.

[25]Bernards M A, Fleming W D, Llewellyn D B, Priefer R, Yang Xiao-long, Sabatino A, Plourde G L. Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiology, 1999, 121: 135-145.

[26]Adie B, Chico J M, Rubio-Somoza I, Solano R. Modulation of plant defenses by ethylene. Journal of Plant Growth Regulation, 2007, 26(2): 160-177.

[27]Gerchikov N, Keren-Keiserman A, Per-Treves R, Ginzberg I. Wounding of melon as a model system to study rind netting. Horticulture Science, 2008, 117: 115-122.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[8] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[9] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[10] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[11] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[12] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[13] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[14] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[15] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!