Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2167-2178.doi: 10.3864/j.issn.0578-1752.2021.10.012

• HORTICULTURE • Previous Articles     Next Articles

Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon

MA Jian1(),LI CongCong2(),HUANG YaTing1,XIE YuLi1,CHENG LingLing1,WANG JianShe1()   

  1. 1Beijing Vegetable research Center, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097
    2Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097
  • Received:2020-07-30 Accepted:2020-09-03 Online:2021-05-16 Published:2021-05-24
  • Contact: JianShe WANG E-mail:majian@nercv.org;cong861109@163.com;wangjianshe@nercv.org

Abstract:

【Objective】In this study, the genetic analysis and fine mapping of melon seed coat color gene were performed, and the candidate gene was isolated and the molecular marker developed, so as to provide a foundation for gene function and rational utilization. 【Method】The inbred line HP22 with white seed coat was crossed with the inbred line B8 and B150 with yellow seed coat, and the offspring population was obtained, respectively. The seed coat colors of offspring plants were investigated by visual inspection. The locus of gene was fine mapped through map-based cloning strategy, and the candidate target gene in the mapping region was determined by gene sequencing and function analysis of gene coding region. 【Result】The white seed coat was dominant to yellow, which was controlled by a single dominant gene locus, named CmSC1, showed delayed genetic characteristic. Using 368 yellow seed coat individuals from F2 population, the target gene CmSC1 was delimited to a 95 kb interval flanked by markers S27 and S28 on chromosome 5 that contained twelve annotated open reading frames (ORFs). Among of them, the MELO3C014406 gene encoded a bHLH transcription factor protein which was homologous to the Arabidopsis AtTT8 gene. Sequence analysis of MELO3C014406 gene in the yellow seed coat inbred lines indicated that two types of sequence variation were identified. The first type was an A insertion at the 47th base pairs position downstream of ATG, and the other was a 14 bp deletion at the 260th base pair position downstream of ATG, which caused premature termination and produced truncated proteins, respectively. Furthermore, the sequencing analysis of 65 yellow seed coat accessions were detected by specific molecular marker YS, and the results showed that they all contained one mutation type of two variation types. These results suggested that the MELO3C014406 gene was an ideal candidate gene for CmSC1 controlling seed coat color.【Conclusion】In this study, the CmSC1 gene regulating seed coat color was finally mapped to a 95 kb interval, and the MELO3C014406 gene was presumed to be the candidate gene. In addition, a specific marker YS was developed based on the 14 bp deletion of MELO3C014406 gene.

Key words: melon (Cucumis melo L.), seed coat color, gene mapping, proanthocyanidins, basic helix-loop-helix transcription factor

Table 1

PCR primer sequences used in this study"

引物名称 Primer 正向引物 Forward primer (5'-3') 反向引物 Reverse primer (5'-3')
ID1716 TTCCACGAACTCAGGAGCTG AGTAGCATGAGGCTAGACTTGA
S24 TGAACTCGTGTCTAACGTACCA ACTCCACTCTCGTATCCAGT
S26 GCAATGGAGGTGAGTGCCAA GCATGTCTTTGCCATGTTGTGT
S27 ATGACCAAACAATGGTGCTGTG GCTTGTGTGAGAGTAAATCAAGGT
S2 AGAGGGAAGCCATCAAGCAA ATTGTACATACTGTCTAGGGTTTCT
S28 AAACCATTGACACAAGCTCCA ACATCACATGTATCAAGTGCCT
S29 ATTCCATTTTCGTCAAACAACTTTC GTCCATCATGATCTATCGCAAAA
S30 GGCTTTCCTTTGTCAGATTCCA CCAAAGTGGGGTAGGAGCATT
S33 GGTTTATGATGAAAACGACCGA GAGGTGACGAGGTCCAAATAA
S34 CACCCACTTAGGGTTGAAGAA GTTTGGAATTGAAGTACACACCT
S35 GAGCATTAAGACCAAAGACACAA TAAGTAACGAGTGAGGTTGGG
ID3716 GCTACAAGCCATGTTGAACTCT TGAAGAAGCGAGGAAAGAATAGG
YS CTTATCCGCCTCCGACACC AGTTAACGCACCCGAACCC
CmSC1 AGACCCATTTGTTTCACTTTCACC CAGAGAAGCTTCCACTCCCA

Fig. 1

Phenotype of seed coat color"

Table 2

Genetic analysis of the seed coat color"

亲本或组合
Parents or generation
白色种皮株数
White seed color individuals
黄色种皮株数
Yellow seed color individuals
分离比
Expected ratio
χ20.05
χ20.05
HP22 (P1) 5 0
B8 (P2) 0 5
B150 (P3) 0 5
F1 (P1×P2) 0 10
F1 (P1×P2) 10 0
F1 (P1×P3) 0 10
F1 (P1×P3) 10 0
F1 (P2×P3) 0 10
F1 (P2×P3) 0 10
F2 (P1×P2) 10 0
F2 (P2×P3) 0 10
F2:3 (P1×P2) 1029 368 3:1 1.41
F2:3 (P1×P3) 358 112 3:1 0.28
F2:3 (P2×P3) 0 115

Fig. 2

Physical maps of the CmSC1 locus A: The primary mapping of CmSC1 gene; B: Fine mapping of the CmSC1 gene and the numbers under markers indicated the numbers of recombinants (Rec.) ; C: Physical map of the CmSC1 region based on the reference sequence, arrows indicated annotated open reading frames (ORFs) and two black arrows indicated candidate genes in this region"

Table 3

Annotated ORFs of the final region"

预测基因编号
Predicted ORF code
基因名称
Gene name
预测基因功能
Putative function
1 MELO3C014412 铝激活的类苹果酸转运蛋白12 Aluminum-activated malate transporter 12-like
2 MELO3C014411 富含半胱氨酸的类受体激酶蛋白 Cysteine-rich receptor-kinase-like protein
3 MELO3C014408 类bHLH69转录因子 Transcription factor bHLH69-like isoform X1
4 MELO3C014407 醛糖/酮还原酶家族蛋白 Aldo/keto reductase family protein
5 MELO3C031122 碱性螺旋-环-螺旋转录因子 Basic helix-loop-helix transcription factor
6 MELO3C031072 碱性螺旋-环-螺旋转录因子 Basic helix-loop-helix transcription factor
7 MELO3C014405 未知功能蛋白 Unknown protein
8 MELO3C014409 未知功能蛋白 Unknown protein
9 MELO3C014403 蛋白前转位酶亚基SCY2 Preprotein translocase subunit SCY2
10 MELO3C014402 FANTASTIC FOUR 2蛋白 Protein FANTASTIC FOUR 2
11 MELO3C014401 硫胺素磷酸合成酶 Thiamine phosphate synthase
12 MELO3C014400 硫胺素磷酸合成酶 Thiamine phosphate synthase

Table 4

The variation sites of HP22 and B8"

基因名称
Gene
变异位点 Variation site
DHL92 HP22 B8
MELO3C014412 2750429A (I65) 2750429C (L65) 2750429A (I65)
MELO3C014408 2765792-, 2766079A (T104) 2765792A (移码突变 Code shift mutation), 2766079G (A104) 2765792-, 2766079A (T104)
MELO3C014409 2755903T 2755903A (终止密码 Termination coden) 2755903T
MELO3C031122 2781790- 2781790- 2781790A (终止密码 Termination coden)

Fig. 3

Gene structure, mutation site, predicated function domains and phylogenetic analysis of MELO3C014406 gene and its protein A: Gene structure of MELO3C014406;B: Sequence analysis of mutation sites; C: The predicted function domains of MELO3C014406 protein; D: The phylogenetic tree of CmSC1 and its homologs"

Fig. 4

The genotypic analysis of YS marker in two parents, F1 and selected F2 plants P1: HP22; P2: B150; 1-36: F2 plants with yellow seed coat; M: 100 bp DNA ladder"

Table 5

Genotyping of the CmSC1 gene in 104 melon accessions"

编号No. 材料名称
Accession
种皮颜色(F2
Seed coat color (F2)
基因型 Genotype 编号
No.
材料名称
Accession
种皮颜色(F2
Seed coat color (F2)
基因型 Genotype
ATG47 ATG260 ATG47 ATG260
1 HP22 白色 White ― ― ― ― 53 H30 黄色 Yellow ― ― -14 bp
2 B8 黄色 Yellow +A ― ― 54 H32 黄色 Yellow ― ― -14 bp
3 B150 黄色 Yellow ― ― -14 bp 55 H33 黄色 Yellow ― ― -14 bp
4 B1 白色 White ― ― ― ― 56 H34 黄色 Yellow ― ― -14 bp
5 B2 黄色 Yellow +A ― ― 57 H35 黄色 Yellow ― ― -14 bp
6 B3 白色 White ― ― ― ― 58 H36 黄色 Yellow ― ― -14 bp
7 B4 白色 White ― ― ― ― 59 H37 黄色 Yellow ― ― -14 bp
8 B5 白色 White ― ― ― ― 60 H38 黄色 Yellow ― ― -14 bp
9 B6 黄色 Yellow +A ― ― 61 H41 黄色 Yellow ― ― -14 bp
10 B7 白色 White ― ― ― ― 62 H50 黄色 Yellow ― ― -14 bp
11 B9 白色 White ― ― ― ― 63 H53 黄色 Yellow ― ― -14 bp
12 B10 白色 White ― ― ― ― 64 H56 黄色 Yellow ― ― -14 bp
13 B11 黄色 Yellow +A ― ― 65 H58 黄色 Yellow ― ― -14 bp
14 B12 白色 White ― ― ― ― 66 H61 黄色 Yellow ― ― -14 bp
15 B13 黄色 Yellow +A ― ― 67 H68 黄色 Yellow ― ― -14 bp
16 B14 白色 White ― ― ― ― 68 H74 黄色 Yellow ― ― -14 bp
17 B15 白色 White ― ― ― ― 69 H76 黄色 Yellow ― ― -14 bp
18 B16 黄色 Yellow +A ― ― 70 H81 黄色 Yellow ― ― -14 bp
19 B17 白色 White ― ― ― ― 71 H82 黄色 Yellow ― ― -14 bp
20 B18 白色 White ― ― ― ― 72 H84 黄色 Yellow ― ― -14 bp
21 B19 白色 White ― ― ― ― 73 H93 黄色 Yellow ― ― -14 bp
22 B20 白色 White ― ― ― ― 74 H98 黄色 Yellow ― ― -14 bp
23 B21 白色 White ― ― ― ― 75 H99 黄色 Yellow ― ― -14 bp
24 B22 黄色 Yellow +A ― ― 76 H101 黄色 Yellow ― ― -14 bp
25 B23 黄色 Yellow +A ― ― 77 H105 黄色 Yellow ― ― -14 bp
26 B24 黄色 Yellow ― ― -14 bp 78 H107 黄色 Yellow ― ― -14 bp
27 B27 白色 White ― ― ― ― 79 H109 黄色 Yellow ― ― -14 bp
28 B29 黄色 Yellow ― ― -14 bp 80 H118 黄色 Yellow ― ― -14 bp
29 B31 白色 White ― ― ― ― 81 H161 黄色 Yellow ― ― -14 bp
30 B32 白色 White ― ― ― ― 82 HP1 白色 White ― ― ― ―
31 B33 白色 White ― ― ― ― 83 HP2 白色 White ― ― ― ―
32 B35 黄色 Yellow +A ― ― 84 HP3 白色 White ― ― ― ―
33 B36 白色 White ― ― ― ― 85 HP4 白色 White ― ― ― ―
34 B37 白色 White ― ― ― ― 86 HP5 黄色 Yellow ― ― -14 bp
35 B38 白色 White ― ― ― ― 87 HP6 黄色 Yellow ― ― -14 bp
36 B39 白色 White ― ― ― ― 88 HP7 黄色 Yellow ― ― -14 bp
37 B53 黄色 Yellow +A ― ― 89 HP8 黄色 Yellow ― ― -14 bp
38 B224 黄色 Yellow ― ― -14 bp 90 HP9 黄色 Yellow ― ― -14 bp
39 B98 黄色 Yellow +A ― ― 91 HP10 黄色 Yellow ― ― -14 bp
40 B133 黄色 Yellow +A ― ― 92 HP11 黄色 Yellow ― ― -14 bp
41 B134 黄色 Yellow +A ― ― 93 HP12 黄色 Yellow ― ― -14 bp
42 B196 黄色 Yellow +A ― ― 94 H71 黄色 Yellow ― ― -14 bp
43 B198 黄色 Yellow +A ― ― 95 H72 黄色 Yellow ― ― -14 bp
44 B220 黄色 Yellow +A ― ― 96 1520A 白色 White ― ― ― ―
45 B241 黄色 Yellow +A ― ― 97 Z8 白色 White ― ― ― ―
46 H7 黄色 Yellow +A ― ― 98 BZ1119 褐色 Brown +A ― ―
47 H16 黄色 Yellow +A ― ― 99 BZ2659 褐色 Brown +A ― ―
48 H17 黄色 Yellow ― ― -14 bp 100 3A832 白色 White ― ― ― ―
49 H19 黄色 Yellow ― ― -14 bp 101 雪丽脆 Xuelicui 白色 White ― ― 杂合 Hybrid
50 H23 黄色 Yellow ― ― -14 bp 102 瑞金 Ruijin 白色 White ― ― 杂合 Hybrid
51 H24 黄色 Yellow ― ― -14 bp 103 冀州鲜 Jizhouxian 白色 White ― ― 杂合 Hybrid
52 H29 黄色 Yellow ― ― -14 bp 104 火焰二号F1 F1 of Huoyan 2 白色 White ― ― 杂合 Hybrid
[1] 刘相玉, 张裕舒, 刘柳, 刘识, 高鹏, 王迪, 王学征. 基于CAPS标记的甜瓜单果重相关性状QTL分析. 中国农业科学, 2019,52(9):1601-1613.
LIU X Y, ZHANG Y S, LIU L, LIU S, GAO P, WANG D, WANG X Z. The QTL analysis of single fruit weight associated traits in melon based on CAPS markers. Scientia Agricultura Sinica, 2019,52(9):1601-1613. (in Chinese)
[2] 戴祖云, 赵辉, 夏承东, 杨培柱, 刘永忠. 早熟耐贮浓黄皮甜瓜品种黄子金玉的选育. 中国瓜菜, 2006(1):23-25.
DAI Z Y, ZHAO H, XIA C D, YANG P Z, LIU Y Z. A new melon variety-Golden Jade with early-maturity and dark-yellow rind. Chinese Cucurbits and Vegetables, 2006(1):23-25. (in Chinese)
[3] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008,54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[4] WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001,126(2):485-493.
doi: 10.1104/pp.126.2.485
[5] GONZALEZ A, ZHAO M, LEAVITT J M, LLOYD A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008,53(5):814-827.
doi: 10.1111/tpj.2008.53.issue-5
[6] ZHANG B P, SCHRADER A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants (Basel), 2017,6(4):65.
[7] BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004,39(3):366-380.
doi: 10.1111/tpj.2004.39.issue-3
[8] NESI N, DEBEAUJON I, JOND C, PELLETIER G, CABOCHE M, LEPINIEC L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 2000,12(10):1863-1878.
doi: 10.1105/tpc.12.10.1863
[9] HEIM M A, JAKOBY M, WERBER M, MARTIN C, WEISSHAAR B, BAILEY P C. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003,20(5):735-747.
doi: 10.1093/molbev/msg088
[10] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix loop-helix transcription factor family. The Plant Cell, 2003,15(8):1749-1770.
doi: 10.1105/tpc.013839
[11] GOFF S A, CONE K C, CHANDLER V L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes Development, 1992,6(5):864-875.
doi: 10.1101/gad.6.5.864
[12] PATTANAIK S, KONG Q, ZAITLIN D, WERKMAN J R, XIE C H, PATRA B, YUAN L. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 2010,231(5):1061-1076.
doi: 10.1007/s00425-010-1108-y
[13] PAYNE C T, ZHANG F, LLOYD A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000,156(3):1349-1362.
doi: 10.1093/genetics/156.3.1349
[14] BERNHARDT C, LEE MM, GONZALEZ A, ZHANG F, LLOYD A, SCHIEFELBEIN J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development, 2003,130(26):6431-6439.
doi: 10.1242/dev.00880
[15] ZHANG F, GONZALEZ A, ZHAO M Z, PAYNE C T, LLOYD A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 2003,130(20):4859-4869.
doi: 10.1242/dev.00681
[16] URAO T, YAMAGUCHI-SHINOZAKI K, MITSUKAWA N, SHIBATA D, SHINOZAKI K. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Molecular Biology, 1996,32(3):571-576.
doi: 10.1007/BF00019112
[17] LI X, CHEN L, HONG M Y, ZHANG Y, ZU F, WEN J, YI B, MA C Z, SHEN J X, TU J X, FU T D. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS ONE, 2012,7(9):e44145.
doi: 10.1371/journal.pone.0044145
[18] SPELT C, QUATTROCCHIO F, MOL J N M, KOES R. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000,12(9):1619-1631.
doi: 10.1105/tpc.12.9.1619
[19] SPELT C, QUATTROCCHIO F, MOL J, KOES R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coatdevelopment by genetically distinct mechanisms. The Plant Cell, 2002,14(9):2121-2135.
doi: 10.1105/tpc.003772
[20] BURR F A, BURR B, SCHEFFLER B E, BLEWITT M, WIENAND U, MATZ E C. The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing. The Plant Cell, 1996,8(8):1249-1259.
[21] SWEENEY M T, THOMSON M J, PFEIL B E, MCCOUCH S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 2006,18(2):283-294.
doi: 10.1105/tpc.105.038430
[22] 谭澍, 程蛟文, 崔峻杰, 李卫鹏, 胡开林. 苦瓜单瓜种子数与种皮颜色的遗传分析. 中国蔬菜, 2013(18):48-52.
TAN S, CHENG J W, CUI J J, LI W P, HU K L. Genetic analysis on single fruit seed numbers and seed coat color of bitter melon. China Vegetables, 2013 (18):48-52. (in Chinese)
[23] 周庆友. 丝瓜主要农艺性状的遗传分析及种皮颜色基因定位[D]. 南昌: 江西农业大学, 2013.
ZHOU Q Y. Genetic analysis of main agronomic traits and gene localization of seed coat color in Luffa spp[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese)
[24] LI B B, LU X Q, GEBREMESKEL H, ZHAO S J, HE N, YUAN P L, GONG C S, MOHAMMEN U, LIU W G. Genetic mapping and discovery of the candidate gene for black seed coat color in watermelon (Citrullus lanatus). Frontiers in Plant Science, 2020,10:1689.
doi: 10.3389/fpls.2019.01689
[25] HAGIWARA T, KAMIMURA K. Cross-Breeding Experiments in Cucumis melo. Tokyo: Tokyo Horticultural School Publication, 1936.
[26] PÉRIN C, DOGIMONT C, GIOVINAZZO N, BESOMBES D, GUITTON L, HAGEN L, PITRAT M. Genetic control and linkages of some fruit characters in melon. Cucurbit Genetics Cooperative Report, 1999,22:16-18.
[27] 张可鑫, 戴冬洋, 王浩男, 蔚明月, 盛云燕. 甜瓜种子相关性状遗传规律与QTL分析. 浙江农业学报, 2018,30(9):1496-1503.
ZHANG K X, DAI D Y, WANG H N, YU M Y, SHENG Y Y. Genetic and QTL analysis of seed traits in melon (Cucumis melon L.). Acta Agriculturae Zhejiangensis, 2018,30(9):1496-1503. (in Chinese)
[28] TZURI G, ZHOU X, CHAYUT N, YUAN H, PORTNOY V, MEIR A, SA'AR U, BAUMKOLER F, MAZOUREK M, LEWINSOHN E, FEI Z, SCHAFFER AA, LI L, BURGER J, KATZIR N, TADMOR Y. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 2015,82(2):267-279.
doi: 10.1111/tpj.2015.82.issue-2
[29] 马建, 李丛丛, 王建设. 甜瓜短蔓基因Cmdm1的精细定位及候选基因分析. 中国农业科学, 2020,53(4):802-810.
MA J, LI C C, WANG J S. Fine mapping and candidate gene analysis of a short internodes gene Cmdm1 in melon (Cucumis melo L.). Scientia Agricultura Sinica, 2020,53(4):802-810. (in Chinese)
[30] ZHOU Y, MA Y S, ZENG J G, DUAN L X, XUE X F, WANG H S, LIN T, LIU Z Q, ZENG K W, ZHONG Y, ZHANG S, HU Q, LIU M, ZHANG H M, REED J, MOSES T, LIU X Y, HUANG P, QING Z X, LIU X B, TU P F, KUANG H H, ZHANG Z H, OSBOURN A, RO D-K, SHANG Y, HUANG S W. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants, 2016,2:16183.
doi: 10.1038/nplants.2016.183
[31] BROTMAN Y, NORMANTOVICH M, GOLDENBERG Z, ZVIRIN Z, KOVALSKI I, STOVBUN N, DONIGER T, BOLGER A M, TROADEC C, BENDAHMANE A, COHEN R, KATZIR N, PITRAT M, DOGIMONT C, PERL-TREVES R. Dual Resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Molecular Plant, 2013,6(1):235-238.
doi: 10.1093/mp/sss121
[32] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4326.
doi: 10.1093/nar/8.19.4321
[33] BAI Y H, PATTANAIK S, PATRA B, WERKMAN J R, XIE C H, YUAN L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta, 2011,234(2):363-375.
doi: 10.1007/s00425-011-1407-y
[34] YOSHIDA K, KUME N, NAKAYA Y, YAMAGAMI A, NAKANO T, SAKUTA M. Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus. Plant Cell Physiology, 2010,51(6):912-922.
[35] RAHIM M A, AFRIN K S, JUNG H J, KIM H T, PARK J I, HUR Y K, NOU I S. Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli (Brassica oleracea var. italica L.). Genome, 2019,62(4):253-266.
doi: 10.1139/gen-2018-0173
[36] DEBEAUJON I, LÉON-KLOOSTERZIEL K M, KOORNNEEF M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology, 2000,122(2):403-414.
doi: 10.1104/pp.122.2.403
[37] SWEENEY M T, THOMSON M J, PFEIL B E, MCCOUCH S R. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 2006,18(2):283-294.
doi: 10.1105/tpc.105.038430
[38] SWEENEY M T, THOMSON M J, CHO Y G, PARK Y J, WILLIAMSON S H, BUSTAMANTE C D, McCouch S R. Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genetics, 2007,3(8):1418-1424.
[39] GU X Y, FOLEY M E, HORVATH D P, ANDERSON J V, FENG J H, ZHANG L H, CMOWRY C R, YE H, SUTTLE J C, KADOWAKI K, CHEN Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011,189(4):1515-1524.
doi: 10.1534/genetics.111.131169
[40] MCCREIGHT J D, BOHN G W. Descriptions, genetics and independent assortment of red stem and pale in muskmelon (Cucumis melo L.). Journal of the American Society for Horticultural Science, 1979,104(6):721-723.
[1] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[2] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[3] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[4] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[5] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[6] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[7] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[8] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
[9] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
[10] XUE HongLi, YANG JunJun, TANG Sha, ZHI Hui, WANG Rui, JIA GuanQing, QIAO ZhiJun, DIAO XianMin. Morphological Characterization and Gene Mapping of a Panicle Apical Abortion Mutant (sipaa1) in Foxtail Millet [J]. Scientia Agricultura Sinica, 2018, 51(9): 1627-1640.
[11] ZHANG YaoFeng, ZHANG DongQing, YU HuaSheng, LIN BaoGang, HUA ShuiJin, DING HouDong, FU Ying. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3029-3039.
[12] CHANG XueLing, ZHANG ZongWen, LI YanQin, GAO Jia. Cloning and Expression Analyses of the mate Gene in Buckwheat [J]. Scientia Agricultura Sinica, 2018, 51(11): 2038-2048.
[13] ZHANG XiaoBo, XIE Jia, ZHANG XiaoQiong, TIAN WeiJiang, HE PeiLong, LIU SiCen, HE GuangHua, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Dwarf and Curled Flag Leaf Mutant dcfl1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1551-1558.
[14] ZHANG NanNan, LU ZhenHua, CUI GuoChao, PAN Lei, ZENG WenFang, NIU Liang, WANG ZhiQiang. Gene Mapping of Aphid-Resistant for Peach Using SNP Markers [J]. Scientia Agricultura Sinica, 2017, 50(23): 4613-4621.
[15] LIANG MeiXia, QIAO XuQiang, GUO XiaoTong, ZHANG HongXia. Research Progresses in mechanisms of Growth Habits and Co Gene Mapping of Columnar Apple (Malus domestica × Borkh.) [J]. Scientia Agricultura Sinica, 2017, 50(22): 4421-4430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!