Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3308-3319.doi: 10.3864/j.issn.0578-1752.2021.15.014

• HORTICULTURE • Previous Articles     Next Articles

Fine Mapping of an Immature Rind Color Gene GR in Melon

XU XinYang(),SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong()   

  1. Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2020-09-20 Accepted:2020-12-16 Online:2021-08-01 Published:2021-08-10
  • Contact: WeiSong SHOU E-mail:shine2014201048@163.com;shouws@zaas.ac.cn

Abstract:

【Objective】 The aim of this study was to explore the inheritance pattern of immature rind color of melon (Cucumis melo L.), to fine map target gene GR, and to deepen the understanding of rind color change during fruit growth, so as to provide a guidance for the improvement of melon color with molecular design breeding.【Method】 The dark-green rind line ‘MR-1’ (C. melo ssp. agrestis) and the light-green rind line ‘LGR’ (C. melo ssp. melo) were used as parents to construct the F1 hybrid population, and the BC1F1 backcross population was constructed from crossing by F1 and ‘LGR’ for genetic analysis of immature rind color. By selecting 20 dark-green and light-green plants each in BC1F1 population, the DNA was mixed, respectively, and the BSA-seq was operated for initial mapping. Based on the resequencing of two parents, the molecular markers with better specificity were developed in the initial region and recombinant individuals were identified and selected to verify and narrow the interval for fine mapping the GR gene. By sequencing of coding regions between two parents according to the gene annotation, the candidate gene and key variant site were determined. Moreover, the phenotype of immature and mature fruit in the BC1F1 backcross population was investigated and assessed by correlation analysis to explore the underlying mechanism of rind color transition in the fruit development.【Result】 According to the investigation, the phenotype of all F1 individual plants exhibited dark-green rind color. In addition, the immature rind color of BC1F1 backcross population was found to be separated, and the ratio of the number of dark-green to light-green was approximately 1﹕1. As well as, the ratio of the number of dark-green to light-green in the F2 population was 3﹕1. These ratios corresponded to Mendel’s law of inheritance, indicating that the immature rind color of melon was a quality trait, controlled by a single nuclear gene GR, and the dark-green was dominant to light-green. Through BSA-seq, the gene was initially mapped to a 1.8 Mb interval on the long arm of chromosome 4. With developed molecular markers, 24 recombinant individuals were selected in expanded mapping population. The gene was further narrowed down to a region between markers 4-102 and 4-81 with a physical distance of 17.7 kb by genotype and phenotype verification of offspring, where were four predicted genes with latest annotation. Sequencing analysis revealed that a gene MELO3C003375 encoding GLKs transcription factor CmAPRR2 had several variations in ‘MR-1’ and ‘LGR’. Among them, there were three synonymous, a missense mutation, and a nonsense mutation. The nonsense mutation (G to T) appeared in the 856th base of the coding region led to premature translation termination and most of the Myb-DNA binding domain to be lost in ‘LGR’. Thus, the MELO3C003375 (CmAPRR2) was speculated to be the GR gene and the nonsense mutation was the key variation that affected the immature rind color of melon. It was found that there was a significant correlation between the rind color of immature fruit and mature fruit by investigating the phenotype of fruits in the BC1F1 backcross population.【Conclusion】 Immature rind color (dark green/light green) of melon was a quality trait and controlled by a single nuclear gene GR. By mapping, MELO3C003375 (CmAPRR2) was presumed to be the candidate gene that affected immature rind color.

Key words: melon, immature rind color, gene mapping, GR, MELO3C003375 (CmAPRR2)

Fig. 1

Rind colors of parental and reciprocal cross F1"

Table 1

Genetic analysis of immature rind color"

组合
Cross
深绿皮植株
Dark green individual
浅绿皮植株
Light green individual
理论比
Expected ratio
Chi-square Pa
P1 (MR-1) 10 0
P2 (LGR) 0 10
F1 (P1×P2) 25 0
F1 (P2×P1) 25 0
F2 (F1 ?) 132 44 3﹕1 0.000 1.000
BC1F1 (F1×LGR) 98 89 1﹕1 0.433 0.510

Fig. 2

Manhattan plot for mapping of GR (The red circle is the target interval)"

Fig. 3

Linkage analysis of GR A: Genotype of recessive single plant DNAs at marker 4-6; Lane 1 is the parent ‘MR-1’, Lane 2 is the parent ‘LGR’, Lane 8, 19, 58 are the recombination individuals; B: Polymorphism identification of markers. The mark represents the primers, the left lane of each primer is the parent ‘MR-1’, the right is the ‘LGR’. M: DNA size ladder"

Table 2

Primers for mapping"

引物名 Primer 正向引物 Forward primer (5'-3') 反向引物 Reverse primer (5'-3')
4-6 GGTGATCTAGGGCTTCTTTT GGGCTTACCCTTGATTTAAC
4-15 CGGATAATGGGTTCTATGTG CAATTCAATCCCCTCACTAC
4-78 TTTTCTTTTAACTTGGCCTG TTTTTGGAAGAGGATACAACA
4-31 TGACATCAATAATGCCTCTTT CTTGACGTAGGACAAATGGT
4-38 GAGGATTTGTTTGGCTTTTA CATCTCTCATGTTGATGTCG
4-28 TAATCTAAGCTCCTTCGTGG AGTTTATGAAGGCTTTGTGG
4-43 CTACGTGGTATCACAAGCAA AGCCAAAGTGTAATGCAACT
4-58 ACGACAAATAAATCGGTGAT TAGGAAATCAACCAAATGCT
4-102 TGTATTATCCTCCGGACAAC AATTACCAACCAATCCAATG
4-81 TCGGTTAAAAAGAGCCATTA GAAGATGATTATCGGATTGC
4-89 TGAGCAAAGGTTTACAACAA GTAATTTCAAGATCGCCTTC
4-21 AACGGTACCAAACTAGGCTT CTTATGTTGGGAATGTGACC

Fig. 4

Fine mapping of GR A: The GR gene was located on the chromosome 4 between marker 4-6 and 4-58; B: The GR gene was mapped to 17.7 kb region between marker 4-102 and 4-81, number of recombinant individuals are shown under the markers; C: ORFs was identified as the candidate gene in the mapping interval"

Table 3

Variations in the coding region of genes in the mapping interval"

染色体
CHROM
位置
POS
参考碱基
REF
比对碱基
ALT
变异类型
Variant-classification
基因号
Gene_ID
参考氨基酸
REF (aa)
比对氨基酸
ALT (aa)
chr04 612438 T G 错义突变 Missense_variant MELO.jh030628.1 K Q
chr04 612476 T C 错义突变 Missense_variant MELO.jh030628.1 N S
chr04 612484 G A 同义突变 Synonymous_variant MELO.jh030628.1 A A
chr04 612488 G T 错义突变 Missense_variant MELO.jh030628.1 T K
chr04 612491 C G 错义突变 Missense_variant MELO.jh030628.1 R P
chr04 612501 C T 错义突变 Missense_variant MELO.jh030628.1 E Q
chr04 612505 A G 同义突变 Synonymous_variant MELO.jh030628.1 Y S
chr04 612519 A T 错义突变 Missense_variant MELO.jh030628.1 I I
chr04 613526 A G 同义突变 Synonymous_variant MELO3C003375 E E
chr04 613558 G C 错义突变 Missense_variant MELO3C003375 R P
chr04 614480 A C 同义突变 Synonymous_variant MELO3C003375 L L
chr04 614898 T C 同义突变 Synonymous_variant MELO3C003375 G G
chr04 615687 G T 终止突变 Stop_gained MELO3C003375 E *
chr04 617619 A G 错义突变 Missense_variant MELO3C003375 Q R
chr04 620196 T G 错义突变 Missense_variant MELO3C003376 L R

Fig. 5

Analysis of gene structure, variant site, and protein domain of MELO3C003375 A: Gene structure of MELO3C003375. The number represents the distance to the transcription start site. The former number represents the base in the ‘MR-1’, the latter number represents the base in the ‘LGR’; B: The variant site which generating a truncated protein in ‘LGR’; C: The function domains of MELO3C003375 in ‘MR-1’ and ‘LGR’"

Table 4

Rind color of BC1F1 individuals"

单株
Individual
目测分型
Visual phenotype
测色仪分型 Colorimeter phenotype 单株
Individual
目测分型
Visual phenotype
测色仪分型 Colorimeter phenotype
L* a* b* -a*/b* L* a* b* -a*/b*
1938-10 1 34.13 -9.27 12.92 0.72 1938-23 2 64.23 -21.15 37.73 0.56
1938-102 1 35.93 -11.70 15.61 0.75 1938-108 2 64.65 -21.53 39.58 0.54
1938-7 1 37.88 -11.34 15.67 0.72 1938-103 2 64.92 -18.34 35.51 0.52
1938-118 1 38.22 -11.56 15.74 0.73 1938-85 2 65.01 -21.73 38.89 0.56
1938-145 1 39.05 -14.92 19.32 0.77 1938-171 2 65.56 -16.07 30.12 0.53
1938-121 1 39.61 -11.60 16.06 0.72 1938-178 2 66.27 -19.51 36.34 0.54
1938-54 1 39.99 -12.87 18.36 0.70 1938-94 2 66.33 -20.65 37.11 0.56
1938-6 1 40.02 -13.92 19.04 0.73 1938-197 2 66.35 -20.05 37.66 0.53
1938-157 1 40.29 -14.03 18.26 0.77 1938-179 2 66.75 -18.38 35.02 0.52
1938-142 1 40.31 -14.97 20.42 0.73 1938-61 2 67.49 -18.07 33.77 0.54
1938-136 1 40.76 -12.21 16.60 0.74 1938-82 2 67.50 -20.62 37.68 0.55
1938-151 1 40.93 -13.66 19.46 0.70 1938-15 2 67.67 -21.07 41.99 0.50
1938-169 1 41.14 -16.18 22.67 0.71 1938-30 2 67.78 -20.14 38.48 0.52
1938-25 1 41.19 -12.37 16.92 0.73 1938-44 2 67.99 -18.63 34.39 0.54
1938-14 1 41.87 -12.74 17.96 0.71 1938-24 2 68.09 -18.93 35.43 0.53
1938-80 1 42.00 -13.50 18.71 0.72 1938-42 2 68.11 -14.18 26.98 0.53
1938-84 1 42.02 -13.71 18.85 0.73 1938-74 2 68.24 -16.08 30.06 0.53
1938-55 1 42.28 -16.38 23.00 0.71 1938-41 2 68.28 -19.11 36.31 0.53
1938-97 1 42.50 -12.92 18.75 0.69 1938-192 2 69.22 -18.21 35.16 0.52
1938-155 1 42.50 -13.65 19.51 0.70 1938-78 2 69.43 -16.80 34.09 0.49
1938-123 1 42.60 -15.64 22.26 0.70 1938-127 2 69.47 -18.10 35.94 0.50
1938-106 2 42.73 -15.78 32.13 0.49 1938-47 2 69.84 -12.30 25.56 0.48
1938-105 1 43.01 -14.05 20.31 0.69 1938-34 2 70.05 -13.82 27.42 0.50
1938-90 1 43.11 -15.87 22.53 0.70 1938-36 2 70.16 -16.87 31.90 0.53
1938-196 1 43.13 -15.91 23.06 0.69 1938-56 2 70.91 -18.35 36.30 0.51
1938-73 1 43.20 -14.87 20.70 0.72 1938-32 2 71.22 -20.39 39.66 0.51
1938-172 1 43.63 -15.79 22.55 0.70 1938-37 2 71.61 -14.19 29.57 0.48
1938-138 1 43.66 -19.06 27.68 0.69 1938-174 2 72.01 -17.03 33.74 0.50
1938-158 1 43.80 -15.26 21.35 0.71 1938-100 2 72.10 -16.69 33.75 0.49
1938-96 1 44.14 -13.62 19.23 0.71 1938-148 2 72.40 -12.86 26.55 0.48
1938-183 1 44.20 -15.36 21.77 0.71 1938-43 2 72.51 -16.45 33.17 0.50
1938-110 1 44.29 -14.86 20.62 0.72 1938-137 2 72.85 -17.16 33.69 0.51
1938-66 1 44.30 -14.96 21.47 0.70 1938-170 2 73.15 -10.46 22.55 0.46
1938-8 1 44.50 -15.71 22.95 0.68 1938-164 2 73.16 -15.30 30.24 0.51
1938-135 1 44.59 -16.82 23.88 0.70 1938-93 2 73.48 -10.44 23.49 0.44
1938-119 1 44.61 -14.32 20.77 0.69 1938-128 2 73.53 -10.25 23.35 0.44
1938-72 1 44.61 -15.18 21.38 0.71 1938-131 2 73.74 -12.46 26.94 0.46
1938-181 1 44.64 -17.28 24.91 0.69 1938-198 2 74.25 -15.37 30.34 0.51
单株
Individual
目测分型
Visual phenotype
测色仪分型 Colorimeter phenotype 单株
Individual
目测分型
Visual phenotype
测色仪分型 Colorimeter phenotype
L* a* b* -a*/b* L* a* b* -a*/b*
1938-86 1 44.69 -16.33 23.36 0.70 1938-133 2 74.31 -7.57 23.46 0.32
1938-186 1 44.86 -17.29 24.84 0.70 1938-160 2 74.51 -13.13 27.28 0.48
1938-18 1 45.09 -17.55 25.70 0.68 1938-176 2 74.58 -11.32 23.60 0.48
1938-129 1 45.55 -14.07 19.89 0.71 1938-182 2 74.86 -14.14 30.47 0.46
1938-116 1 45.69 -19.19 29.01 0.66 1938-51 2 75.18 -9.40 22.19 0.42
1938-91 1 45.81 -14.98 21.89 0.68 1938-58 2 75.23 -14.90 32.67 0.46
1938-154 1 45.87 -17.03 24.69 0.69 1938-109 2 75.44 -10.67 22.89 0.47
1938-146 1 45.96 -15.47 22.17 0.70 1938-166 2 75.78 -8.28 24.49 0.34
1938-147 1 46.04 -17.91 26.64 0.67 1938-45 2 75.92 -9.62 21.11 0.46
1938-67 1 46.07 -16.66 24.57 0.68 1938-165 2 76.03 -10.21 22.82 0.45
1938-199 1 46.18 -16.44 24.74 0.66 1938-112 2 76.14 -9.10 21.58 0.42
1938-12 1 46.36 -13.68 20.22 0.68 1938-168 2 76.22 -9.99 23.75 0.42
1938-75 1 46.45 -14.91 21.76 0.69 1938-50 2 76.59 -8.39 23.53 0.36
1938-76 1 46.76 -19.53 27.56 0.71 1938-22 2 77.06 -7.11 22.34 0.32
1938-153 1 46.80 -13.74 19.54 0.70 1938-5 2 77.33 -9.11 22.33 0.41
1938-98 1 46.92 -17.90 26.62 0.67 1938-177 2 77.33 -13.14 27.97 0.47
1938-40 1 47.11 -20.92 30.50 0.69 1938-115 2 78.12 -9.06 23.98 0.38
1938-120 1 47.14 -17.81 27.06 0.66 1938-159 2 78.33 -7.92 21.01 0.38
1938-57 1 47.61 -13.86 20.00 0.69 1938-114 2 78.38 -9.95 22.76 0.44
1938-11 1 47.64 -17.65 26.57 0.66 1938-35 2 78.40 -8.03 23.03 0.35
1938-69 1 47.71 -14.40 20.78 0.69 1938-60 2 78.41 -8.91 23.92 0.37
1938-107 1 48.32 -14.43 21.45 0.67 1938-77 2 78.64 -9.13 22.56 0.40
1938-113 1 48.62 -16.57 24.84 0.67 1938-173 2 78.74 -8.24 22.42 0.37
1938-59 1 48.94 -17.18 25.16 0.68 1938-200 2 78.87 -14.35 30.49 0.47
1938-162 1 48.95 -16.55 24.53 0.67 1938-38 2 79.10 -9.19 22.90 0.40
1938-193 1 49.07 -14.29 20.99 0.68 1938-31 2 79.14 -7.07 21.17 0.33
1938-48 1 49.71 -16.18 23.58 0.69 1938-144 2 79.14 -9.61 23.88 0.40
1938-33 1 51.37 -12.38 19.50 0.63 1938-83 2 79.18 -5.58 20.69 0.27
1938-49 1 51.39 -16.94 25.05 0.68 1938-188 2 79.65 -7.15 19.66 0.36
1938-52 1 51.56 -16.89 24.72 0.68 1938-143 2 79.73 -8.08 21.52 0.38
1938-180 1 51.58 -19.16 30.58 0.63 1938-39 2 80.58 -6.52 21.68 0.30
1938-167 1 52.73 -18.01 28.87 0.62 1938-111 2 80.87 -5.44 21.39 0.25
1938-125 1 53.74 -19.25 33.86 0.57 1938-62 2 81.17 -5.93 18.66 0.32
1938-195 1 56.00 -21.92 35.41 0.62 1938-124 2 81.51 -6.67 18.92 0.35
1938-79 1 59.12 -19.87 39.01 0.51 1938-149 2 81.98 -7.08 25.33 0.28
1938-140 2 61.54 -21.20 38.29 0.55 1938-194 2 82.38 -4.25 20.43 0.21
1938-16 2 61.87 -22.45 39.16 0.57 1938-65 2 82.81 -6.49 26.53 0.24
1938-26 2 61.95 -23.03 40.14 0.57 1938-2 2 83.14 -4.57 21.21 0.22
1938-141 2 64.21 -19.76 37.03 0.53 1938-202 2 77.91 -6.22 33.89 0.18
[1] TADMOR Y, BURGER J, YAAKOV I, FEDER A, LIBHABER S E, PORTNOY V, MEIR A, TZURI G, SA’AR U, ROGACHEV I, AHARONI A, ABELIOVICH H, SCHAFFER A A, LEWINSOHN E, KATZIR N. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. Journal of Agricultural and Food Chemistry, 2010, 58(19):10722-10728.
doi: 10.1021/jf1021797
[2] GUSMINI G, WEHNER T C. Genes determining rind pattern inheritance in watermelon: A review. HortScience, 2005, 40(6):1928-1930.
doi: 10.21273/HORTSCI.40.6.1928
[3] WHITAKER T W, DAVIS G N. Cucurbits: Botany, cultivation and utilization. Journal of Association of Official Agricultural Chemists, 1962, 45(4):1052.
[4] PARTHASARATHY V A, SAMBANDAM C N. Inheritance in Indian melons. Indian Journal of Genetics and Plant Breeding, 1981, 41(1):114-117.
[5] KUBICKI B. Inheritance of some characters in muskmelons. Genetiea Polonlca, 1962, 3:265-274.
[6] PEREIRA L, RUGGIERI V, PÉREZ S, ALEXIOU K G, FERNÁNDEZ M, JAHRMANN T, PUJOL M, GARCIA-MAS J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biology, 2018, 18(1):324.
doi: 10.1186/s12870-018-1537-5
[7] BURGER Y, BHASTEKER D, SA’AR U, KATZIR N, PARIS H S. A recessive gene for light immature exterior color of melon. Cucurbit Genetics Cooperative Report, 2006, 28/29:17-18.
[8] OREN E, TZURI G, VEXLER L, DAFNA A, MEIR A, FAIGENBOIM A, KENIGSWALD M, PORTNOY V, SCHAFFER A A, LEVI A, BUCKLER E S, KATZIR N, BURGER J, TADMOR Y, GUR A. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany, 2019, 70(15):3781-3794.
doi: 10.1093/jxb/erz182
[9] HUGHES M. The inheritance of two characters of Cucumis melo and their interrelationship. Journal of the American Aociety for Horticultural Science, 1948, 52:399-402.
[10] FEDER A, BURGER J, GAO S, LEWINSOHN E, KATZIR N, SCHAFFER A A, MEIR A, DAVIDOVICH-RIKANATI R, PORTNOY V, GAL-ON A, FEI Z J, KASHI Y, TADMOR Y. A kelch domain- containing F-box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Physiology, 2015, 169(3):1714-1726.
[11] EDUARDO I, ARÚS P, MONFORTE A J, OBANDO J, FERNANDEZ-TRUJILLO J P, MARTINEZ J A, ALARCÓN A L, ALVAREZ J M, VAN DER KNAAP E. Estimating the genetic architecture of fruit quality traits in melon (Cucumis melo L.) using a genomic library of near-isogenic lines. Journal of the American Society for Horticultural Science, 2007, 132(1):80-89.
doi: 10.21273/JASHS.132.1.80
[12] OBANDO J, FERNÁNDEZ-TRUJILLO J P, MARTÍNEZ J A, ALARCÓN A L, EDUARDO I, ARÚS P, MONFORTE A J. Identification of melon fruit quality quantitative trait loci using near-isogenic lines. Journal of the American Society for Horticultural Science, 2008, 133(1):139-151.
doi: 10.21273/JASHS.133.1.139
[13] PITRAT M, HANELT P, HAMMER K. Some comments on infraspecific classification of cultivars of melon. Acta Horticulturae, 2000, 510:29-36.
[14] 林德佩. 中国栽培甜瓜植物的起源、分类及进化. 中国瓜菜, 2010(4):34-36.
LIN D P. Origin classification and evolution for cultivated plants of Chinese melon. China Cucurbits and Vegetables, 2010(4):34-36. (in Chinese)
[15] LIU H Q, JIAO J Q, LIANG X J, LIU J, MENG H W, CHEN S X, LI Y H, CHENG Z H. Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2016, 129(7):1247-1256.
doi: 10.1007/s00122-016-2700-8
[16] PAN Y, BRADLEY G, PYKE K, BALL G, LU C G, FRAY R, MARSHALL A, JAYASUTA S, BAXTER C, VAN WIJK R, BOYDEN L, CADE R, CHAPMAN N H, FRASER P D, HODGMAN C, SEYMOUR G B. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiology, 2013, 161(3):1476-1485.
doi: 10.1104/pp.112.212654
[17] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫健. 作物基因组学与作物科学革命. 中国农业科学, 2015, 48(17):3316-3332.
JIA J Z, GAO L F, ZHAO G Y, ZHOU W B, ZHANG W J. Crop genomics and crop science revolutions. Scientia Agricultura Sinica, 2015, 48(17):3316-3332. (in Chinese)
[18] ZHAO G W, LIAN Q, ZHANG Z H, FU Q S, HE Y H, MA S W, RUGGIERI V, MONFORTE A J, WANG P Y, JULCA I, WANG H S, LIU J P, XU Y, WANG R Z, JI J B, XU Z H, KONG W H, ZHONG Y, SHANG J L, PEREIRA L, ARGYRIS J, ZHANG J A, MAYOBRE C, PUJOL M, OREN E, OU D D, WANG J M, SUN D X, ZHAO S J, ZHU Y C, LI N, KATZIR N, GUR A, DOGIMONT C, SCHAEFER H, FAN W, BENDAHMANE A, FEI Z J, PITRAT M, GABALDÓN T, LIN T, GARCIA-MAS J, XU Y Y, HUANG S W. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51(11):1607-1615.
doi: 10.1038/s41588-019-0522-8
[19] 杨光华, 范荣, 杨小锋, 侯军亮, 袁士臣, 曹明, 王学林, 李劲松. 甜瓜果实颜色3个质量性状基因的定位. 园艺学报, 2014, 41(5):898-906.
YANG G H, FAN R, YANG X F, HOU J L, YUAN S C, CAO M, WANG X L, LI J S. Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo. Acta Horticulturae Sinica, 2014, 41(5):898-906. (in Chinese)
[20] 欧点点, 赵光伟, 贺玉花, 王平勇, 徐志红, 孔维虎, 张健, 徐永阳. 甜瓜果皮颜色遗传分析及基因定位. 中国农学通报, 2019, 35(13):64-69.
OU D D, ZHAO G W, HE Y H, WANG P Y, XU Z H, KONG W H, ZHANG J A, XU Y Y. Genetic analysis and gene mapping for melon rind color. Chinese Agricultural Science Bulletin, 2019, 35(13):64-69. (in Chinese)
[21] FALLIK E, ALKALI-TUVIA S, HOREV B, COPEL A, RODOV V, AHARONI Y, ULRICH D, SCHULZ H. Characterization of ‘Galia’ melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biology and Technology, 2001, 22(1):85-91.
doi: 10.1016/S0925-5214(00)00185-X
[22] REID M S, LEE T H, PRATT H K, CHICHESTER C O. Chlorophyll and carotenoid changes in developing muskmelons. Journal of the American Society for Horticultural Science, 1970, 95(6):814-815.
[23] FLÜGEL M, GROSS J. Pigment and plastid changes in mesocarp and exocarp of ripening muskmelon Cucumis melo cv. Galia. Angewandte Botanik, 1982, 56(5/6):393-406.
[24] LIGHTBOURN G J, GRIESBACH R J, NOVOTNY J A, CLEVIDENCE B A, RAO D D, STOMMEL J R. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. Journal of Heredity, 2008, 99(2):105-111.
doi: 10.1093/jhered/esm108
[25] CHEN M, JI M L, WEN B B, LIU L, LI S X, CHEN X D, GAO D S, LI L. GOLDEN 2-LIKE transcription factors of plants. Frontiers in Plant Science, 2016, 7:1509.
[26] WATERS M T, MOYLAN E C, LANGDALE J A. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal, 2008, 56(3):432-444.
doi: 10.1111/tpj.2008.56.issue-3
[27] WATERS M T, WANG P, KORKARIC M, CAPPER R G, SAUNDERS N J, LANGDALE J A. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell, 2009, 21(4):1109-1128.
doi: 10.1105/tpc.108.065250
[28] MASON M G, MATHEWS D E, ARGYROS D A, MAXWELL B B, KIEBER J J, ALONSO J M, ECKER J R, SCHALLER G E. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell, 2005, 17(11):3007-3018.
doi: 10.1105/tpc.105.035451
[29] ARGYROS R D, MATHEWS D E, CHIANG Y H, PALMER C M, THIBAULT D M, ETHERIDGE N, ARGYROS D A, MASON M G, KIEBER J J, SCHALLER G E. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant Cell, 2008, 20(8):2102-2116.
doi: 10.1105/tpc.108.059584
[30] CHOI J, HUH S U, KOJIMA M, SAKAKIBARA H, PAEK K H, HWANG I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 2010, 19:284-295.
doi: 10.1016/j.devcel.2010.07.011
[31] TANG W J, WANG W Q, CHEN D Q, JI Q A, JING Y J, WANG H Y, LIN R C. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. The Plant Cell, 2012, 24(5):1984-2000.
doi: 10.1105/tpc.112.097022
[32] GAO S, GAO J, ZHU X Y, SONG Y, LI Z P, REN G D, ZHOU X, KUAI B K. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant, 2016, 9(9):1272-1285.
doi: 10.1016/j.molp.2016.06.006
[1] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[2] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
[3] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[4] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[5] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[6] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[7] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[8] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[9] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[10] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[11] LIU XiangYu, ZHANG YuShu, LIU Liu, LIU Shi, GAO Peng, WANG Di, WANG XueZheng. The QTL Analysis of Single Fruit Weight Associated Traits in Melon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2019, 52(9): 1601-1613.
[12] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[13] ZHENG XiaoYuan, WANG TiaoLan, ZHANG JingRong, JIANG Hong, WANG Bin, BI Yang. Using Chlorine Dioxide Treatment to Promote Wound Healing of Postharvest Muskmelon Fruit [J]. Scientia Agricultura Sinica, 2019, 52(3): 512-520.
[14] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[15] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!