Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (5): 1013-1028.doi: 10.3864/j.issn.0578-1752.2014.05.018

• RESEARCH NOTES • Previous Articles     Next Articles

Evolution of Agronomic Traits of Wheat and Analysis of the Mechanism of Agronomic Traits Controlling the Yield Traits in the Huang-Huai Plain

 ZHANG  Li-Ying-1, 2 , ZHANG  Zheng-Bin-1, XU  Ping-1, WEI  Yun-Zong-3, LIU  Xin-Jiang-4   

  1. 1、Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021;
    2、University of Chinese Academy of Sciences, Beijing 100049;
    3、Wheat Research Institute, Shanxi Academy   of Agricultural Sciences, Linfen 041000, Shanxi;
    4、Shaanxi Weinan Seed Station, Weinan 714000, Shaanxi
  • Received:2013-09-05 Online:2014-03-01 Published:2013-10-31

Abstract: 【Objective】 The impact of climate change on wheat production has been received wide attention, and wheat breeding must be reoriented under climate change. The purpose of this study was to analyze the agronomic traits evolution of wheat evolution materials in Huang-Huai Plain and the mechanism controlling the yield traits, and to provide a theoretical basis for wheat adapting to the climate change and high yield breeding goal in future.【Method】The evolutionary trend of 12 agronomic characters among 30 different ploidy wheat evolution materials was analyzed. Meanwhile, correlation analysis, multiple linear regression analysis, path analysis, etc. were conducted to discuss the regulation pattern that agronomic traits controlling the yield traits in wheat breeding process.【Result】The results of analysis of the evolution tendency of agronomic traits and multiple statistical analysis were obtained as follows: ① The growing period, heading stage, plant height and spike number per plant tended to reduce, but the percentage of reproductive stage in the whole growing period, harvest index, 1000-grain weight and grain weight per plant tended to increase at different levels in wheat evolution; ② Correlation analysis showed that grain weight per plant has a significant or extremely significant positive correlation with the percentage of reproductive stage in the whole growing period, kernels per spike, 1000-grain weight, harvest index and biological yield per plant, but has an extremely significant negative correlation with heading stage, growth period and spike number per plant.; ③ Multiple stepwise regression analysis showed that the determination coefficient of three factors including harvest index, biological yield per plant and growth period selected by multiple linear regression analysis to grain weight per plant was 0.960; ④ Path analysis showed that the biggest direct contribution to grain weight per plant was harvest index among 11 agronomic traits, and followed by biological yield per plant, kernels per spike, spike length, spike number per plant, spikelet number per spike, the percentage of reproductive stage in the whole growing period, heading stage, plant height, 1000-grain weight and growth period, but the biggest direct positive effects on grain weight per plant were harvest index, biological yield per plant and kernels per spike; ⑤ The result of principle components analysis showed that the 3 principal components of the cumulative contribution rate reached 81.873%, and the main information of all traits have been covered; ⑥ According to cluster analysis of comprehensive value and comparing characteristics of agronomic traits, 30 wheat materials have been divided into five types as follows early mature-dwarf-low yield, late maturing-high stalk-low yield, late maturing-high stalk-middle yield, early mature-dwarf-middle yield and early mature-dwarf-high yield. 【Conclusion】 The evolution tendency of wheat materials was obtained by multiple statistics. The results indicate that harvest index, biological yield per plant and kernels per spike has an obvious positive effect on grain weight per plant, but growth period has a negative effect on grain weight per plant in wheat evolution from diploid to tetraploid then to hexaploid. That is the result of natural selection and artificial high yield selection under the background of global climate warming.

Key words: Huang-Huai Plain , wheat , agronomic traits , evolution , climate change

[1]Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138: 82-92.

[2]Xiao D, Tao F, Liu Y, Shi W, Wang M, Liu F, Zhang S, Zhu Z. Observed changes in winter wheat phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 2013, 57: 275-285.

[3]Rai M, Reeves T G, Pandey S, Collette L. Save and Grow: A Policymaker's Guide to Sustainable Intensification of Smallholder Crop Production. Rome: Food and Agriculture Organization of the United Nations, 2011.

[4]Mba C, Guimaraes E P, Ghosh K. Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agriculture and Food Security, 2012, 1: 7.

[5]Change IPOC. Climate change 2007: The physical science basis. Agenda, 2007: 6.

[6]唐国利, 任国玉. 近百年中国地表气温变化趋势的再分析. 气候与环境研究, 2005, 10(4): 791-798.

Tang G L, Ren G Y. Reanalysis of surface air temperature change of the last 100 years over China. Climate and Environmental Research, 2005, 10(4): 791-798. (in Chinese)

[7]李明志, 袁嘉祖, 李建军. 中国气候变化现状及前景分析. 北京林业大学学报: 社会科学版, 2003, 2(2): 16-20.

Li M Z, Yuan J Z, Li J J. Status quo, causes and analysis of China’s climate change. Journal of Beijing Forestry University: Social Sciences, 2003, 2(2): 16-20. ( in Chinese)

[8]莫兴国, 林忠辉, 刘苏峡. 黄淮海地区小麦生产力时空变化及其驱动机制分析. 自然资源学报, 2006, 21(3): 449-457.

Mo X G, Lin Z H, Liu S X. Spatial-temporal evolution and driving forces of winter wheat productivity in the Huang-Huai-Hai region. Journal of Natural Resources, 2006, 21(3): 449-457. (in Chinese)

[9]Liu S X, Mo X G, Lin Z H, Xu Y Q, Ji J J, Wen G, Richey J. Crop yield response to climate change in the Huang-Huai-hai Plain of China. Agricultural Water Management, 2010, 97(8): 1195-1209.

[10]Hu Q, Weiss A, Feng S, Baenziger P S. Earlier winter wheat heading dates and warmer spring in the US Great Plains. Agricultural and Forest Meteorology, 2005, 135: 284-290.

[11]杨建莹, 梅旭荣, 刘勤, 严昌荣, 何文清, 刘恩科, 刘爽. 气候变化背景下华北地区冬小麦生育期的变化特征. 植物生态学报, 2011, 35(6): 623-631.

Yang J Y, Mei X R, Liu Q, Yan C R, He W Q, Liu E K, Liu S. Variations of winter wheat growth stages under climate change in northern China. Chinese Journal of Plant Ecology, 2011, 35(6): 623-631. (in Chinese)

[12]Pingali P L. Global wheat research in a changing world: Challenges and achievements. CIMMYT, 1999.

[13]孙道杰, 宋仁刚, 王辉. 调整小麦生长发育对环境因子的敏感性培育可应对气候变化的新品种. 安徽农业科学, 2007, 35(33): 10642-10644.

Sun D J, Song R G, Wang H. Breeding photosensitivity enhanced wheat varieties with the losses caused by climate change. Journal of Anhui Agriculture Science, 2007, 35(33): 10642-10644. ( in Chinese)

[14]张正斌. 小麦遗传学. 北京: 中国农业出版社, 2001.

Zhang Z B. Wheat Genetics. Beijing: China Agriculture Press, 2001. (in Chinese)

[15]张正斌, 山仑. 小麦旗叶水分利用效率比较研究. 科学通报, 1997, 42(17): 1876-1881.

Zhang Z B, Shan L. A comparative study of flag leaf water use efficiency of wheat. Chinese Science Bulletin, 1997, 42(17): 1876-1881. (in Chinses)

[16]贾继增, 张正斌, Devos K, Gale M D. 小麦21条染色体RFLP作图位点遗传多样性分析. 中国科学: C辑, 2001, 31(1): 13-21.

Jia J Z, Zhang Z B, Devos K, Gale M D. Analysis of genetic diversity for 21 wheat chromosomes RFLP graphic dot. Science in China: Series C, 2001, 31(1): 13-21. (in Chinese)

[17]张正斌, 山仑, 徐旗. 控制小麦种, 属旗叶水分利用效率染色体背景分析, 遗传学报, 2000, 27(3): 240-246.

Zhang Z B, Shan L, Xu Q. Background analysis of chromosomes controlling genetic of water use efficiency of Triticum. Acta Genetica Sinica, 2000, 21(3): 240-246. (in Chinese)

[18]刘建辉, 孙建云, 戴廷波, 姜东, 荆奇, 曹卫星. 不同小麦进化材料生育后期光合特性和产量. 植物生态学报, 2007, 31(1): 138-144.

Liu J H, Sun J Y, Dai T B, Jiang D, Jing Q, Cao W X. Late-growth photosynthetic characteristics and grain yield of different wheat evolutionary materials. Journal of Plant Ecology, 2007, 31(1): 138-144. (in Chinese)

[19]黄明丽, 邓西平, 周生路, 赵玉宗. 二倍体, 四倍体和六倍体小麦产量及水分利用效率. 生态学报, 2007, 27(3): 1113-1121.

Huang M L, Deng X P, Zhou S L, Zhao Y Z. Grain yield and water use efficiency of diploid, tetraploid and hexaploid wheats. Acta Ecologica Sinica, 2007, 27(3): 1113-1121. (in Chinese)

[20]廖东梅, 薛文韬, 杨荣志, 严俊, 程剑平. 野生二粒小麦与我国栽培小麦品质性状比较研究. 贵州农业科学, 2010, 38(2): 7-9.

Liao D M, Xue W T, Yang R Z, Yan J, Cheng J P. Study on quality characters of T. dicoccoides materials from Israel and some cultivated wheat varieties from China. Guizhou Agricultural Sciences, 2010, 38(2): 7-9. (in Chinese)

[21]李伟, 陈国跃, 魏育明, 郑有良. 圆锥小麦地方品种的农艺性状分析. 麦类作物学报, 2008, 28(4): 649-654.

Li W, Chen G Y, Wei Y M, Zheng Y L. Analysis of agronomic traits of Tritucum turgidum L. landraces. Journal of Triticeae Crops, 2008, 28(4): 649-654. (in Chinese)

[22]蒲至恩, 刘亚西, 李伟. 斯卑尔脱小麦的起源与遗传研究及其在普通小麦育种中的利用. 植物遗传资源学报, 2009, 10(3): 475-479.

Pu Z E, Liu Y X, Li W. Origin and genetics of spelt wheat (Triticum spelta L.) and its utilization in the genetic improvement of common wheat (T. aestivum L.). Journal of Plant Genetic Resources, 2009, 10(3): 475-479. (in Chinese)

[23]王晓蓉, 李伟, 郑有良. 栽培二粒小麦 (Triticum dicoccum Schrank) 主要农艺性状分析. 四川农业大学学报, 2007, 25(3): 239-248.

Wang X R, Li W, Zheng Y L. Principal component and cluster analysis of agronomic characters in Triticum dicoccum schrank. Journal of Sichuan Agricultural University, 2007, 25(3): 239-248. (in Chinese)

[24]侯永翠, 蒲至恩, 尚海英, 李伟. 斯卑尔脱小麦主要农艺性状鉴定与评价. 西南农业学报, 2010, 23(002): 315-321.

Hou Y C, Pu Z E, Shang H Y, Li W. Analysis of agronomic traits Triticum spelta L. germplasms. Southwest China Journal of Agricultural Sciences, 2010, 23(002): 315-321(in Chinese)

[25]姚慧敏, 张凤荣, 鞠正山. 黄淮海平原区耕地变化对粮食生产能力的影响. 农村经济, 2004, 10: 31-33.

Yao H M, Zhang F R, Ju Z S. The effect of cultivated land change on grain production capacity on the Huang-Huai-Hai Plain. Rural Economy, 2004, 10: 31-33. (in Chinese)

[26]姜群鸥, 邓祥征, 战金艳, 刘兴权, 唐华秀. 黄淮海平原气候变化及其对耕地生产潜力的影响. 地理与地理信息科学, 2007, 23(5): 82-85.

Jiang Q O, Deng X Z, Zhan J Y, Liu X Q, Tang H X. Climate change and its impacts on the agricultural productivity potential on the Huang-Huai-Hai Plain. Geography and Geo-Information Science, 2007, 23(5): 82-85. (in Chinese)

[27]曹亚萍. 小麦的起源、进化与中国小麦遗传资源. 小麦研究, 2008, 29(3) :1-10.

Cao Y P. The evolutionary origin of wheat and wheat genetic resources in China. Journal of Wheat Research, 2008, 29(3): 1-10. (in Chinese)

[28]王绍武, 蔡静宁, 朱锦红, 龚道溢. 中国气候变化研究. 气候与环境研究, 2002, 7(2): 137-145.

Wang S W, Cai N J, Zhu J H, Gong D Y. Studies on climate change in China. Climatic and Environmental Research, 2002, 7(2): 137-145. (in Chinese)

[29]McCorriston J, Hole F. The ecology of seasonal stress and the origins of agriculture in the Near East. American Anthropologist, 1991, 93(1): 46-69.

[30]Davis B A S, Brewer S, Stevenson A C, Guiot J. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 2003, 22(15): 1701-1716.

[31]Jone P D, Osbrn T J, Briffa K R. The evolution of climate over the last millennium. Science, 2001, 292(5517): 662-667.

[32]Wang S W, Xie Z H, Cai J N, Zhu J H, Gong D Y. Global mean temperature change during the last millennium. Progress in Natural Science, 2002, 12(12): 920-924.

[33]杨梅学, 姚檀栋. 近2000a来古里雅冰芯记录及19-20世纪的气候变暖. 冰川冻土, 2004, 26(3): 289-293.

Yang M X, Yao T D. Ice core records in the past 2000 years and climate warming during the 18th-20th centuries. Journal of Glaciology and Geocryology, 2004, 26(3): 289-293. (in Chinese)

[34]张兰生, 方修琦, 任国玉. 全球变化. 北京: 高等教育出版社, 2000.

Zhang L S, Fang X Q, Ren G Y. Global Change. Beijing: Higher Education Press, 2000. (in Chinese)

[35]温孝胜, 彭子成, 赵焕庭. 中国全新世气候演变研究的进展. 地球科学进展, 1999, 14(3): 292-298.

Wen X S, Peng Z C, Zhao H T. Advance in study on the Holocene climate evolution in China. Advance in Earth Sciences, 1999, 14(3): 292-298. (in Chinese)

[36]竺可桢, 中国近五千年来气候变迁的初步研究. 中国科学A辑, 1973, 2: 168-189.

Zhu K Z. Preliminary research progress in China for nearly five thousand years of climate change. Science in China A. 1973, 2: 168-189. (in Chinese)

[37]姚檀栋, 杨志红, 皇翠兰, 焦克勤, 谢超, Thompson L G. 近2ka来高分辨率的连续气候环境变化记录—古里雅冰芯近2ka记录初步研究. 科学通报, 1996, 41(12): 1103-1106.

Yao T D, Yang Z H, Huang C L, Jiao K Q, Xie C, Thompson L G. Nearly 2 ka to high-resolution climate change records in a row-the preliminary study of ice core records in the past 2000 years. Chinese Science Bulletin, 1996, 41(12): 1103-1106. (in Chinese)

[38]宁金花, 申双和. 气候变化对中国农业的影响. 现代农业科技, 2009, 12: 251-256.

Ning J H, Shen S H. Effects of climate change on agriculture in China. Modern Agricultural Sciences and Technology, 2009, 12: 251-256. (in Chinese)

[39]熊伟, 林而达, 蒋金荷, 李岩, 许吟隆. 中国粮食生产的综合影响因素分析. 地理学报, 2010(4): 398-406.

Xiong W, Lin E D, Jiang J H, Li Y, Xu Y L. The analysis of China's grain production comprehensive influence factors. Acta Geographica Sinica, 2010(4): 398-406. (in Chinese)

[40]金之庆, 方娟, 葛道阔, 郑喜莲, 陈华. 全球气候变化影响我国冬小麦生产之前瞻. 作物学报, 1994, 20(2): 186-197.

Jin Z Q, Fang J, Ge D K, Zheng X L, Chen H. Prospect to the impacts of climate change. Acta Agronomica Sinica, 1994, 20(2): 186-197. (in Chinese) 

[41]熊伟, 居辉, 许吟隆, 林而达. 气候变化下我国小麦产量变化区域模拟研究. 中国生态农业学报, 2006, 14(2): 164-167.

Xiong W, Ju H, Xu Y L, Lin E D. Regional simulation of wheat yield in China under the climatic change conditions. Chinese Journal of Eco-Agriculture, 2006, 14(2): 164-167. (in Chinese)

[42]杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ.气候暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43(2): 329-336.

Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China I. The possible effects of future climate change on northern limits of cropping systems and crop yield in China. Scientia Agricultura Sinica, 2010, 43(2): 329-336. (in Chinese)

[43]金之庆, 葛道阔, 石春林, 高亮之. 东北平原适应全球气候变化的若干粮食生产对策的模拟研究. 作物学报, 2002, 28(1): 24-31.

Jin Z Q, Ge D K, Shi C L, Gao L Z. Several China strategies of food crop production in the northeast plain for adaptation to global climate change-a modeling study. Acta Agronomica Sinica, 2002, 28(1): 24-31. (in Chinese)

[44]雷水玲. 全球气候变化对宁夏小麦生长和产量的影响. 中国农业气象, 2001, 22(2): 33-36.

Lei S L. Effect of global climate change on spring wheat growth in Ningxia. Chinese Journal of Agrometeorology, 2001, 22(2): 33-36. (in Chinese)

[45]张宇, 王石立, 王馥棠. 气候变化对我国小麦发育及产量可能影响的模拟研究. 应用气象学报, 2000, 11(3): 264-270.

Zhang Y, Wang S L, Wang F T. Research on the possible effects of climate change on growth and yield of wheat in China. Quarterly Journal of Applied Meteorlogy, 2000, 11(3): 264-270. (in Chinese)

[46]赵紫平, 邓西平, 王征宏, 刘彬彬. 灌浆期水分亏缺条件下二, 四, 六倍体小麦收获指数和水分利用效率的演化. 植物生态学报, 2010, 34(4): 444-451.

Zhao Z P, Deng X P, Wang Z H, Liu B B. Evolvement of harvest index and water-use efficiency in diploid, tetraploid and hexaploid wheat during grain-filling stage under different water treatment. Chinese Journal of Plant Ecology, 2010, 34(4): 444-451. (in Chinese)

[47]Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat. Australian Journal of Biological Sciences, 1970, 23: 725-742.

[48]Austin R, Morgan C, Ford M, Bhagwat S. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Annals of Botany, 1982, 49: 177-189.

[49]肖登攀, 陶福禄. 过去30年气候变化对华北平原冬小麦物候的影响研究. 中国生态农业学报, 2011, 20(11): 1539-1545.

Xiao D P, Tao F L. Impact of climate change in 1981-2009 on winter wheat phenology in the north China plain. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1539-1545. (in Chinese)

[50]高辉明, 张正斌, 徐萍, 杨引福, 卫云宗, 刘新月. 2001—2009 年中国北部冬小麦生育期和产量变化. 中国农业科学, 2013, 46(11): 2201-2210.

Gao H M, Zhang Z B, Xu P, Yang Y F, Wei Y Z, Liu X Y. Changes of winter wheat growth period and yield in Northern China from 2001-2009. Scientia Agricultura Sinica, 2013, 46: 2201-2210. (in Chinese)

[51]余卫东, 赵国强, 陈怀亮. 气候变化对河南省主要农作物生育期影响. 中国农业气象, 2007, 28(1): 9-12.

Yu W D, Zhao G Q, Chen H L. Impacts of climate change on growing stages of main crops in Henan province. Chinese Journal of Agrometeorology, 2007, 28(1): 9-12. (in Chinese)

[52]Worland A J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57.

[53]Worland A, Börner A, Korzun V, Li W, Petrovic S, Sayers E. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394.

[54]Snape J, Butterworth K, Whitechurch E, Worland A. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190.

[55]Law C N. The location of genetic factor affecting a quantitative character in wheat. Genetics, 1966, 53(3): 487.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[10] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[11] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[12] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[13] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[14] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[15] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!