Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (23): 4849-4857.doi: 10.3864/j.issn.0578-1752.2013.23.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Comparison of Panicle Length QTL Based on F2 and F8 Populations Derived from Rice Subspecies Cross

 GUO  Xiao-Jiao-2, ZHANG  Tao-13, JIANG  Kai-Feng-13, YANG  Li-13, CAO  Ying-Jiang-1, YANG  Qian-Hua-1, YOU  Shu-Mei-1, WAN  Xian-Qi-3, LUO  Jing-1, LI  Zhao-Xiang-1, GAO  Lei-1, ZHENG  Jia-Kui-123   

  1. 1.Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang 618000, Sichuan;
    2.Bioengineering College, Chongqing University, Chongqing 400044
    3.Luzhou Branch of National Rice Improvement Center, Luzhou 646100, Sichuan
  • Received:2013-06-24 Online:2013-12-01 Published:2013-09-12

Abstract: 【Objective】In this study, rice panicle length QTL was analyzed by using F8 RIL population, the similarities and differences of the genetic map, QTL locations, QTL effects in different derivative population of the same parent were compared and the stable expression of QTL of panicle length trait was identified. The results of the study will provide more information about the genetic behavior of rice panicle length and be benefit to the MAS (marker-assisted selection).【Method】A F8 population containing 188 lines, which was derived from the cross between the indica variety Luhui99 and the japonica variety Nipponbare, was analyzed with a genetic linkage map consisting 207 DNA markers. The statistic software of QTL Network 2.0 was applied to detect QTL and QTL effect analysis for rice panicle length. The similarities and differences of QTL mapping and genetic map between F8 and F2 population were discussed. 【Result】A total of 7 QTL with significant additive effects were detected on chromosomes 2, 3, 6, 7, 8 and 10 in F8 population. The proportions of phenotypic variance explained by individual QTL ranged from 3.38% to 14.8% and the QTL could jointly explain 52.5% of the total phenotypic variance. There were five same chromosomes having rice panicle length QTL in F8 and F2 genetic map and most of the QTL’s physical locations are overlapping or containment. The F8 and F2 genetic maps differed in molecular marker number, marker arrangement, genetic distance and average distance between the markers. 【Conclusion】 Seven rice panicle length QTL were detected in F8 RIL population. Although there were many differences betwen F8 and F2 populations in genetic map, QTL analysis and so on, a steady main QTL was found on the sixth chromosome. In addition, four stable rice panicle length QTL were detected in the study which were not reported in previous references.

Key words: rice , panicle length , QTL mapping

[1]Rao S, Khan M, McNeilly T, Khan A A. Cause and effect relations of yield and yield component in rice (Oryza sativa L.). Journal of Genetics and Breeding, 1997, 51: 1-5.

[2]郭龙彪, 罗利军, 刑永忠, 徐才国, 梅捍卫, 王一平, 钟代彬, 钱前, 应存山, 石春海. 水稻重要农艺性状的两年QTL剖析. 中国水稻科学, 2003, 17(3): 211-218.

Guo L B, Luo L J, Xing Y Z, Xu C G, Mei H W, Wang Y P, Zhong D B, Qian Q, Ying C S, Shi C H. Dissection of QTLs in two years for important agronomic traits in rice (Oryz a sativa L.). Chinese Journal of Rice Science, 2003, 17(3): 211-218. (in Chinese)

[3]Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theoretical and Applied Genetics, 2008, 116: 789-796.

[4]李绍波, 杨国华, 章志宏, 李绍清, 李阳生, 朱英国. 直播条件下水稻6个穗部性状的QTL分析. 武汉植物学研究, 2009, 27(5): 467-472.

Li S B, Yang G H, Zhang Z H, Li S Q, Li Y S, Zhu Y G. Mapping of QTL controlling 6 panicle traits of rice under direct-sowing environment. Journal of Wuhan Botanical Research, 2009, 27(5): 467-472. (in Chinese)

[5]曹立勇, 占小登, 庄杰云, 郑康乐, 程式华. 水稻产量性状QTL分析及上位性分析. 中国农业科学, 2003, 36(11): 1241-1247.

Cao L Y, Zhan X D, Zhuang J Y, Zheng K L, Cheng S H. QTL mapping and epistasis analysis for yield components in a population of rice (Oryza sativa L.  subsp. indica). Scientia Agricultura Sinica, 2003, 36(11): 1241-1247. (in Chinese)

[6]郭龙彪, 罗利军, 邢永忠, 徐才国, 王一平, 梅捍卫, 钟代彬, 钱前, 应存山, 石春海. 水稻汕优63重组自交系重要农艺性状的QTLs和互作分析. 农业生物技术学报, 2002, 10(4): 327-333.

Guo L B, Luo L J, Xing Y Z, Xu C G, Wang Y P, Mei H W, Zhong D B, Qian Q, Ying C S, Shi C H. QTL mapping and interaction analysis for the important agronomic traits of Shanyou 63 recombinant inbred lines in rice. Journal of Agricultural Biotechnology, 2002, 10(4): 327-333. (in Chinese)

[7]方萍, 季天委, 陶勤南, 吴平. 两种供氮水平下水稻穗长QTLs的检测. 中国水稻科学, 2002, 16(2): 176-178.

Fang P, Ji T W, Tao Q N, Wu P. Detecting QTLs for rice panicle length under two Nitrogen levels. Chinese Journal of Rice Science, 2002, 16(2): 176-178. (in Chinese)

[8]崔克辉, 彭少兵, 刑永忠, 余四斌, 徐才国. 水稻产量库相关穗部性状的遗传分析. 遗传学报, 2002, 29(2): 144-152.

Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G. Genetic analysis of the panicle traits related to yield sink size of rice. Journal of Genetics and Genomics, 2002, 29(2): 144-152. (in Chinese)

[9]宋佑胜. 水稻株高和穗长的QTL定位与杂种优势预测[D]. 杭州: 浙江大学, 2001.

Song Y S. QTL mapping and heterosis prediction for plant height and panicle length in rice[D]. Hangzhou: Zhejiang University, 2001. (in Chinese)

[10]廖春燕, 吴平, 易可可, 胡彬, 倪俊健. 不同遗传背景及环境中水稻(Oryza sativa L.)穗长QTLs和上位性分析. 遗传学报, 2000, 27(7): 599-607.

Liao C Y, Wu P, Yi K K, Hu B, Ni J J. QTL mapping and epistasis analysis for panicle length of rice in different genetic background and environment. Journal of Genetics and Genomics, 2000, 27(7): 599-607. (in Chinese)

[11]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99(7): 1255-1264.

[12]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005, 110(7): 1268-1274.

[13]McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1(1): 72-84.

[14]蒋强. 水稻穗长QTL定位[D]. 重庆: 重庆大学, 2008.

Jiang Q. QTL mapping for panicle length of rice[D]. Chongqing: Chongqing University, 2008. (in Chinese)

[15]赵建国, 蒋开锋, 杨莉, 杨乾华, 万先齐, 曹应江, 游书梅, 罗婧, 张涛, 郑家奎. 水稻产量相关性状QTL定位. 中国水稻科学, 2013, 27(3): 344-352.

Zhao J G, Jiang K F, Yang L, Yang Q H, Wang X Q, Cao Y J, You S M, Luo J, Zhang T, Zheng J K. QTL mapping for yield related components in a RIL population of rice. Chinese Journal of Rice Science, 2013, 27(3): 344-352. (in Chinese)

[16]任德勇, 何光华, 凌英华, 桑贤春, 杨正林, 赵芳明. 基于单片段代换系的水稻穗长QTL加性及其上位性效应. 植物学报, 2010, 45(6): 662-669.

Ren D Y, He G H, Ling Y H, Sang X C, Yang Z L, Zhao F M. Additive and epistasis effect for trait of panicle length using SSSLs in rice. Chinese Bulletin of Botany, 2010, 45(6): 662-669.

[17]韩龙植, 乔永利, 张三元, 曹桂兰, 叶昌荣, 徐福荣, 戴陆园, 芮钟斗, 高熙宗. 不同生长环境下水稻主要农艺性状的QTL分析. 中国农业科学, 2005, 38(6): 1080-1087.

Han L Z, Qiao Y L, Zhang S Y, Cao G L, Ye C R, Xu F R, Dai L Y, Ye J D, Gao X Z. QTL analysis of some agronomic traits in rice under different growing environments. Scientia Agricultura Sinica, 2005, 38(6): 1080-1087. (in Chinese)

[18]Xiao J H, Li J M, Grandillo S, Ahn S N, Yuan L P, Tanksley S D, Suan R. McCouch. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150: 899-909.

[19]邢永忠, 徐才国, 华金平, 谈移芳. 水稻穗部性状的QTL与环境互作分析. 遗传学报, 2001, 28(5): 439-466.

Xing Y Z, Xu C G, Hua J P, Tan Y F. QTL mapping and environment interaction analysis for panicle of rice. Journal of Genetics and Genomics, 2001, 28(5): 439-466. (in Chinese)

[20]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Jr, Guimaraes E, Tohne J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical and Applied Genetics, 2001(102): 41-52.

[21]Brondani C, Rangel P H N, Brondani R P V, Ferreira M E. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theoretical and Applied Genetics, 2002, 104: 1192-1203.

[22]Hittalmani S, Shashidhar H E, Bagali P G, Ning H, Sidhu J S, Singh V P, Khush G S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002(125): 207-214.

[23]Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, Tjubaryat T, Moeljopawiro S, McCouch S R. Identification of quantitative trait  loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theoretical and Applied Genetics, 2003(107): 1419-1432.

[24]何风华, 席章营, 曾瑞珍, Akshay Talukdar, 张桂权. 利用单片段代换系鉴定水稻株高及其构成因素的QTL. 中国水稻科学, 2005(19): 387-392.

He F H, Xi Z Y, Zeng R Z, Talukdar A, Zhang G Q. Identification of QTL for plant height and its components by using single segment substitution lines in rice ( Oryza sativa). Chinese Journal of Rice Science, 2005(19): 387-392. (in Chinese)

[25]Marri P R, Sarla N, Laxminarayana V R, Siddiq E A. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genetics, 2005(6): 33-46.

[26]赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状的QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40(3): 447-456.

Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for traits of agronomic importance and analysis of their stabilities using SSSLs in rice. Scientia Agricultura Sinica, 2007, 40(3): 447-456. (in Chinese)

[27]徐华山, 孙永建, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007(33): 979-986.

Xu H S, Sun Y J, Zhou H J, Yu S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agronomica Sinica, 2007(33): 979-986. (in Chinese)

[28]王军, 朱金燕, 周勇, 杨杰, 王中德, 范方军, 梁国华, 仲维功. 基于CSSSLs的水稻穗长QTL的定位. 华北农学报, 2012, 27(1): 68-73.

Wang J, Zhu J Y, Zhou Y, Yang J, Wang Z D, Fan F J, Liang G H, Zhong W G. Mapping of QTLs for panicle length using CSSSLs in rice (Oryza sativa L.). Acta Agriculturae Boreali-Sinica, 2012, 27(1): 68-73. (in Chinese)

[29]Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K S, Xiao J H, Yu Z H, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274.

[30]Harushima Y, Yano M, Shomura A. A high-density rice genetic linkage map with 2275 makers using a single F2 population. Genetics, 1998, 148: 179-191.

[31]Li Z K, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465.

[32]Lashermes P, Combes M C, Prakash N S, Trouslot P, Lorieux M, Charrier A. Genetic linkage map of coffee canephora: Effect of segregation distortion and analysis of recombination rate in male and female meiosis. Genome, 2001, 44(4): 589-596.

[33]梁永书, 彭勇, 叶少平, 李平, 孙林静, 马忠友, 李艳萍. 水稻籼 粳交F2、F6群体遗传连锁图谱的比较. 遗传, 2007, 29(9): 1110-1120.

Liang Y S, Peng Y, Ye S P, Li P, Sun L J, Ma Z Y, Li Y P. Comparison of genetic linkage maps based on F2, F6 populations derived     from rice subspecies cross. Hereditas, 2007, 29(9): 1110-1120. (in  Chinese)

[34]Lorieux M, Goffinet B, Perrier X, Leon G D, Lanaud C. Maximum-likelihood models for mapping genetic markers show segregation distortion.1. Backcross populations. Theoretical and Applied Genetics, 1995, 90(1): 73-80.

[35]Lorieux M, Perrier B, Goffinet B, Lanaud C, Gonzalez D, León G D. Maximum-likelihood models for mapping genetic markers show segregation distortion.2. F2 populations. Theoretical and Applied Genetics, 1995, 90(1): 81-89.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!