Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 54-59.doi: 10.3864/j.issn.0578-1752.2013.01.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Low and High Temperatures on Controlling Azuki Bean Beetle (Callosobruchus chinensis L., Coleoptera: Bruchidae) in Storage

 ZHONG  Jian-Feng, WAN  Zheng-Huang, LI  Li, CHEN  Hong-Wei, WU  Guang-Hong   

  1. Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
  • Received:2012-05-11 Online:2013-01-01 Published:2012-08-09

Abstract: 【Objective】The objective of this study is to identify the most tolerant stage of azuki bean beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae) to low and high temperatures, and obtain different temperature-exposure time to kill the various stages of the insect in storage. And to provide a theoretic foundation for popularizing and applying low and high temperatures for the control of C. chinensis.【Method】Four development stages were exposed for different times at -5 and 40℃ to get the most tolerant stage of C. chinensis for low and high temperatures. Based on the above experimental results, the most cold-tolerant stage was used for consequent bioassays at -5, -10 and - 20℃, and the heat-tolerant stage at 40, 45 and 50℃. 【Result】 Pupa and larva were more cold tolerant stages, LT50 at -5℃ for eggs, larvae, pupae and adults were 12.57, 24.93, 30.54 and 15.76 h, respectively. Pupa was relatively more heat tolerant than other three stages, the LT50 at 40℃ for eggs, larvae, pupae and adults were 4.29, 17.76, 22.33 and 14.50 h, respectively. The LT50 for pupae were 30.54, 6.50 and 0.96 h at -5, -10 and -20℃, respectively. The LT99 were 189.70, 33.81 and 2.90 h, respectively. The LT50 of pupae at 40, 45, and 50℃ were 22.33, 3.64 and 0.85 h, respectively. The LT99 were 169.43, 17.77 and 3.71 h, respectively. 【Conclusion】Both cold tolerance and heat tolerance of pupa are higher than other three life stages, and different temperature-exposure times to kill the pupa stage of the insect are obtained. It is feasible to utilize low and high temperatures to control C. chinensis in storage.

Key words: grain storage , Callosobruchus chinensis , pest management , developmental stages , temperature

[1]Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biology, 2009, 9: 137.

[2]王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42(5): 1519-1527.

Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Scientia Agricultura Sinica, 2009, 42(5): 1519-1527. (in Chinese)

[3]黄建国. 绿豆象的生物学研究. 郑州粮食学院学报, 1980(1): 22-28.

Huang J G. A study on of biologiy of Callosobruchus chinensis. Journal of Zhengzhou Grain College, 1980(1): 22-28. (in Chinese)

[4]张生芳. 我国口岸植物检疫截获的豆象科害虫. 植物检疫, 1997, 11(6): 321-330.

Zhang S F. Identification of 21 species of Bruchidae intercepted in plant quarantine inspections. Plant Quarantine, 1997, 11(6): 321-330. (in Chinese)

[5]王进忠, 田慧敏, 张民照, 张志勇, 金文林, 刘长安, 濮绍京, 孙淑玲. 绿豆象生物学习性及室内药效测定. 北京农学院学报, 2005, 20(4): 25-28.

Wang J Z, Tian H M, Zhang M Z, Zhang Z Y, Jin W L, Liu C A, Pu S J, Sun S L. The biological characteristics and the efficacy of several insecticides on adults of Callasobruchus chinensis L.. Journal of Beijing Agricultural College, 2005, 20(4): 25-28. (in Chinese)

[6]Abate T, Ampofo J K O. Insect pests of beans in Africa: their ecology and management. Annual Review of Entomology, 1996, 41: 45-73.

[7]Valmas N, Ebert P R. Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. PLoS One, 2006, 1(1): e130.

[8]刘长友, 田静, 范保杰, 曹志敏, 苏秋竹, 张志肖, 王素华. 豇豆属3种主要食用豆类的抗豆象育种研究进展. 中国农业科学, 2010, 43(12): 2410-2417.

Liu C Y, Tian J, Fan B J, Cao Z M, Su Q Z, Zhang Z X, Wang S H. Advances in breeding research on bruchid-resistant cultivars of three main Vigna food legumes. Scientia Agricultura Sinica, 2010, 43(12): 2410-2417. (in Chinese)

[9]Kang L, Chen B, Wei J N, Liu T X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology, 2009, 54: 127-145.

[10]Kashiwaba K, Tomooka N, Kaga A, Han O K, Vaughan D A. Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). Journal of Economic Entomology, 2003, 96(1): 207-213. 

[11]Phillips T W, Throne J E. Biorational approaches to managing stored-product insects. Annual Review of Entomology, 2010, 55: 375-397.

[12]Johnson J A, Valero K A. Use of commercial freezers to control cowpea weevil, Callosobruchus maculatus (Coleoptera: Bruchidae), in organic garbanzo beans. Journal of Economic Entomology, 2003, 96(6): 1952-1957.

[13]Edde P A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. Journal of Stored Products Research, 2012, 48: 1-18.

[14]Abdelghany A Y, Awadalla S S, Abdel-Baky N F, El-Syrafi H A, Fields P G. Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae). Journal of Economic Entomology, 2010, 103(5): 1909-1914.

[15]Johnson J A. Survival of Indianmeal moth and navel orangeworm (Lepidoptera: Pyralidae) at low temperatures. Journal of Economic Entomology, 2007, 100(4): 1482-1488.

[16]Mahroof R, Subramanyam B, Throne J E, Menon A. Time-mortality relationships for Tribolium castaneum (Coleoptera: Tenebrionidae) life stages exposed to elevated temperatures. Journal of Economic Entomology, 2003, 96(4): 1345-1351.

[17]Tilley D R, Casada M E, Arthur F H. Heat treatment for disinfestation of empty grain storage bins. Journal of Stored Products Research, 2007, 43: 221-228.

[18]Yu C, Subramanyam B, Flinn P W, Gwirtz J A. Susceptibility of Lasioderma serricorne (Coleoptera: Anobiidae) life stages to elevated temperatures used during structural heat treatments. Journal of Economic Entomology, 2011, 104(1): 317-324.

[19]Opit G P, Arthur F H, Bonjour E L, Jones C L, Phillips T W. Efficacy of heat treatment for disinfestation of concrete grain silos. Journal of Economic Entomology, 2011, 104(4): 1415-1422.

[20]Wright E J, Sinclair E A, Annis P C. Laboratory determination of the requirements for control of Trogoderma variabile (Coleoptera: Dermestidae) by heat. Journal of Stored Products Research, 2002, 38: 147-155.

[21]Southgate B J. Biology of the Bruchidae. Annual Review of Entomology, 1979, 24: 449-473.

[22]Nakayama S, Miyatake T. Positive genetic correlations between life-history traits and death-feigning behavior in adzuki bean beetle (Callosobruchus chinensis). Evolutionary Ecology, 2009, 23: 711-722.

[23]Shukla R, Singh P, Prakash B, Kumar A, Mishra P K, Dubey N K. Efficacy of essential oils of Lippia alba (Mill.) N.E.Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L.. Journal of the Science of Food and Agriculture, 2011, 91: 2277-2283.

[24]Loganathan M, Jayas D S, Fields P G, White N D G. Low and high temperatures for the control of cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in chickpeas. Journal of Stored Products Research, 2011, 47: 244-248.

[25]Fields P G. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 1992, 28(2): 89-118.

[26]秦国勋, 姜良郎, 周弘, 谌运清. 冷热处理巴西豆象效果的研究. 植物检疫, 2001, 15(3): 129-131.

Qin G X, Jiang L L , Zhou H, Chen Y Q. Study on Zabrotes subfasciatus treated with cold or heat methods. Plant Quarantine, 2001, 15(3): 129-131. (in Chinese)

[27]王亮, 邓永学. 热处理对绿豆象及四纹豆象防治效果的研究. 科学咨询, 2011(3): 65-66.

Wang L, Deng Y X. Effect of heat treatment on Callosobruchus maculatus and C. chinensis. Policy & Scientific Consult, 2011(3): 65-66. (in Chinese)

[28]Saxena B, Sharma P, Thappa R, Tikku K. Temperature induced sterilization for control of three stored grain beetles. Journal of Stored Products Research, 1992, 28(1): 67-70.

[29]陆惠生. 温水烫杀绿豆象最适温度试验. 广西农业科学, 2000(2): 75-76.

Lu H S. A test of optimum temperature of hot water for killing Callosobruchus chinensis. Guangxi Agricultural Science, 2000(2): 75-76. (in Chinese)

[30]Murdock L, Shade R. Eradication of cowpea weevil (Coleoptera: Bruchidae) in cowpeas by solar heating. American Entomologist, 1991, 37: 228-231.

[31]Hu H, Churey J J, Worobo R W. Heat treatments to enhance the safety of mung bean seeds. Journal of Food Protection, 2004, 67(6): 1257-1260.

[32]Hansen J D, Johnson J A, Winter D A. History and use of heat in pest control: a review. International Journal of Pest Management, 2011, 57(4): 267-289.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[11] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[12] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[13] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[14] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[15] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!