Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4738-4748.doi: 10.3864/j.issn.0578-1752.2012.22.021

• RESEARCH NOTES • Previous Articles    

Quality Analysis of Spirulina Products Using Three-Step Infrared Spectroscopy

 LIU  Hai-Jing, SUN  Su-Qin, LI  An, HA  Yi-Ming   

  1. 1.Institute of Agro-food Science & Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-product Processing, Ministry of Agriculture, Beijing 100193
     2.Key Laboratory of Bioorganic Phosphorous Chemistry and Chemistry Biology (Ministry of Education), Department of Chemistry, Analysis Center, Tsinghua University, Beijing 100084
  • Received:2012-08-24 Online:2012-11-15 Published:2012-09-11

Abstract: 【Objective】 Fourier transform infrared spectroscopy (FTIR) was used to analyze the principle components in natural Spirulina, Spirulina powder and Spirulina tablet. This could provide a fast, accurate and effective method for quality detection and authenticity test. 【Method】FTIR spectra of two natural Spirulina, four Spirulina powder and four Spirulina tablets were collected. Original IR spectra, second derivate and two-dimensional correlation IR spectra were analyzed to determine the major absorption functional group, main component and differences between samples. Scanning electron microscope images, protein contents and amino acid composition were used to explain the differences in FTIR spectra. 【Result】 Natual Spirulina had three saccharides characteristic peaks in original IR spectra at 1 154/1 156 cm-1, 1 079 cm-1 and 1 039/1 035 cm-1. In the range of 1 000- 1 230 cm-1, natural Spirulina had five auto-peaks at 1 161, 1 138, 1 083, 1 054 and 1 026 cm-1 in 2D-IR correlation spectra. Saccharides characteristic peaks in Spirulina powder and Spirulina tablets were different from natural Spirulina in shape and position and they had fewer atuopeaks in 2D-IR spectroscopy. The content of α-helix in natural Spirulina protein was 24.6 % while the content decreased to 15.0% in Spirulina powder and Spirulina tablets. The amide band in 2D-IR spectroscopy of natural Spirulina was smooth and separate absolutely while amide band of Spirulina powder and Spirulina tablets was broad, bifurcate and hardly separate. Protein contents and amino acid composition also showed that Spirulina products had higher protein content and different amino acid compositions compared with natural Spirulina.【Conclusion】FTIR spectra can distinguish the defferences in saccharides and protein of natural Spirulina, Spirulina powder and Spirulina tablet, thus providing an effective way for quality detection and authenticity test of Spirulina products.

Key words: Spirulina , FTIR , saccharides , protein

[1]Gallardo-Velazquez T, Osorio-Revilla G, Loa M Z, Rivera-Espinoza Y. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Research International, 2009, 42(3): 313-318.

[2]邓月娥, 孙素琴, 周  群, 李 翺. FTIR 光谱法与燕窝的品质分析. 光谱学与光谱分析,2006, 26(7): 1242-1245.

Deng Y E, Sun S Q, Zhou Q, Li A. FTIR spectra and Birds’ nests quality analysis. Spectroscopy and Spectral Analysis, 2006, 26(7): 1242-1245. (in Chinese)

[3]Zhang Y L, Chen J B, Yu L, Zhou Q, Sun S Q, Noda I. Discrimination of different red wine by Fourier-transform infrared and two- dimensional infrared correlation spectroscopy. Journal of Molecular Structure, 2010, 974: 144-150.

[4]邓月饿, 周  群, 孙素琴. 婴儿奶粉的FTIR分析与鉴定. 光谱学与光谱分析, 2006, 26(4): 636-639.

Deng Y E, Zhou Q, Sun S Q. FTIR spectra analysis of baby milk. Spectroscopy and Spectral Analysis, 2006, 26(4): 636-639. (in Chinese)

[5]Belay A, Ota Y, Miyakawa K, Shimamatsu H. Current knowledge on potentioal health benefits of Spirulina. Journal of Applied Phucology, 1993, 5: 235-241.

[6]Capelli B, Cysewski G R. Potential health benefits of Spirulina microalgae. Nutrafoods, 2010, 9(2): 19-26.

[7]Pelizer L H, Danesi E D G, Rangel C D, Sassano C E N, Carvalho J C M, Sato S, Moraes I O.  Influence of inoculums age and concentration in Spirulina platensis cultivation. Journal of Food Engineering, 2003, 56(4): 371-375.

[8]Yakoot M, Salem A. Spirulina platensis versu silymarin inthetreatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. Gastroenterology, 2012, 12: 32.

[9]Torres-Duran P V, Ferreira-Hermosillo A, Juarez-Oropeza M A. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids in Health and Disease, 2007, 6:33.

[10]Maria L, Roberto T, Theodore G. Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-αin RAW macrophages. Journal of Applied Phycology, 2012 (doi:10. 1007/s10811-01209814-4)

[11]El-Sheekh M M, Mahmoud Y A, Abo-Shady A M, Hamza W. Efficacy of Rhodotorula glutinis and Spirulina platensis carotenoids in immunopotentiation of mice infected with Candida albocans SC5314 and Pseudomonas aeruginosa 35. Folia Microbiologica, 2010, 55(1): 61-67.

[12]Hayashi O, Ono S, Ishii K, Shi Y H, Hirahashi T, Katoh T. Enhancement of proliferation and differentiation in bone marrow hematopoietic cells by Spirulina (Arthrospira) platensis in mice. Journal of Applied Phycology, 2006, 18:47-56.

[13]Simpore J, Kabore F, Zongo F, Dansou D, Bere A, Pignatelli S, Biondim D, Ruberto G, Musuneci S. Nutrition rehabilitation of undernourished children utilizing Spirulina and Misola. Nutrition Journal, 2006, doi:10.1186/1475-2891-5-3.

[14]Sun S Q, Zhou Q, Chen J B. Infrared Spectroscopy for Complex Mixtures. Beijing: Chemical Industry, 2011:24-66.

[15]孙素琴, 周  群, 陈建波. 中药红外光谱分析与鉴定.北京:化学工业出版社, 2010.

Sun S Q, Zhou Q, Chen J B. Infrared Spectroscopy for Traditional Chinese Medicine. Beijing: Chemical Industry Press, 2010. (in Chinese)

[16]Fernandez-Novales J, Lopez M I, Sanchez M T, Morales J, Gonzalez-Caballero V. Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking and aging of white and red wines. Food Research International, 2009, 42: 285-291.

[17]Dolores P, Maria-Teresa S, Patricia P, Victoria G, Maria-Auxiliadora S. Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. LWT-Food Science and Technology, 2011, 1: 1-10.

[18]谢晶曦, 常俊标, 王绪明. 红外光谱在有机化学和药物化学中的应用. 北京: 科学出版社, 2001:77-90.

Xie J X, Chang J B, Wang X M, Application of IR Spectral in Organic Chemistry and Medicinal Chemistry, BeiJing: Science Press, 2001:77-90. (in Chinese)

[19]胡皆汉, 郑学仿. 实用红外光谱学. 北京: 科学出版社, 2011:20-68.

Hu J H, Zheng X F. Practical Infrared Spectroscopy. Beijing: Science Press, 2011:20-68. (in Chinese)

[20]Liu K, Jackson M, Sowa M G, Ju H, Dixon I M C, Mantsch H H. Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochimica et Biophysica Acta, 1996, 1315: 73-77.

[21]Severcan F, Haris P I. Fourier transform infrared spectroscopy suggests unfolding of loopstructures precedes complete unfolding of pig citrate synthase. Biopolymers, 2003, 57: 160-168.

[22]Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer,1986, 25: 469-487.

[23]Dong A, Huang P, Caughey W S. Protein secondary structure in water from second- derivative amide I infrared spectra. Biochemistry,1990, 29: 3303-3308.

[24]Ramirez F J, Luque P, Heredia A, Bukovac M J. Fourier transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolumers, 1992, 32: 1425-1429.

[25]Noda I. Two-Dimensional Infrared Spectroscopy. American Chemical Society, 1989, 111(21): 8116-8118.

[26]Noda I. Advances in two-dimensional correlation spectroscopy. Vibrational Spectroscopy, 2004, 36: 143-165.

[27]詹达绮, 张晓明, 孙素琴. 基于小波变换的二维红外相关光谱鉴别人参的生长年限. 光谱学与光谱分析, 2007, 27(8): 1497-1501.

Zhan D Q, Zhang X M, Sun S Q. Two-dimensional correlation IR spectroscopy analysis of ginseng ages based on wavelet transform. Spectroscopy and Spectral Analysis, 2007, 27(8): 1497-1501.(in Chinese)

[28]Zuo L, Sun S Q, Zhou Q, Tao J X, Isao N. 2D-IR correlation analysis of deteriorative process of traditional Chinese medicine ‘Qingkailing’ injection. Journal of Pharmaceutical and Biomedical Analysis, 2003, 30: 1491-1498.
[1] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[5] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[6] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[7] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[8] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
[11] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[12] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[13] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[14] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[15] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!