Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2561-2567.doi: 10.3864/j.issn.0578-1752.2012.13.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Analysis and Mapping of Novel Cleistogamy Gene, cl7(t) in Rice

 NI  Da-Hu, YANG  Ya-Chun, SONG  Feng-Shun, NI  Jin-Long, LI  Li, YANG  Jian-Bo   

  1. 1.中国科学院技术与农业工程研究所,合肥 230031
    2.安徽省农业科学院水稻研究所,合肥 230031
  • Received:2012-02-02 Online:2012-07-01 Published:2012-03-20

Abstract: 【Objective】 Identification, genetic analysis and mapping of novel cleistogamy genes in rice would play an important role in understanding the molecular genetic mechanisms of floral development. At the same time, the cleistogamy is an ideal strategy to prevent pollen explosion in transgenic rice. 【Method】 A rice cleistogamy mutant 8m30 with japonica cultivar H02 background was isolated in M2 population treated with 0.5% EMS (Ethane Methyl Sulfonare). Phenotypic study, genetic analysis and gene mapping by map-based cloning were conducted with the population from F1 of 8m30 and Guanghui102 and its self-cross progenies.【Result】The mutant with lower plant height, compatible plant style and closed paleas at flowering stage. Genetic analysis indicated that the mutant was controlled by a single recessive nuclear gene. The cleistogamy locus was mapped on the long arm of chromosome 7 between the microsatellite markers RM21964 and RM234 with 0.1 cM and 0.3 cM genetic distance, about 160 kb of the physical distance and cosegregated with RM21971, which suggests the mutant locus be novel allele and is tentatively named cl7(t) (Cleistogamy 7 (t)). 【Conclusion】 The 8m30 mutant is controlled by a recessive nuclear gene, which is located on chromosome7 between RM21964 and RM234 with physical distance of 160 kb.

Key words: rice (Oryza sativa L.), cleistogamy, genetic analysis, gene mapping

[1] Connor H E. Breeding systems in the grasses: A survey. New Zealand Journal of Botany, 1979, 17: 547-574.

[2] Merwine N C, Glurey L M, Blackwell K H. Inheritance of papery glume and cleistogamy in sorghum. Crop Science, 1981, 21: 953-956.

[3] Kurauchi N, Makino T, Hirose S. Inheritance of cleistogamy- hasmogamy in barley. Barley Genetics Newsletter, 1993, 23: 19.

[4] Sethi K, Chhabra A K. Cleistogamy in wheat. Rachis, 1990, 9(2): 34-36.

[5] Nagao S, Takahashi M. Trial construction of twelve linkage groups in Japanese rice. Journal of the Faculty of Agriculture, 1963, 53: 72-130.

[6] Daniell H. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 2002, 20: 581-586.

[7] Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T. Identification and mapping of cleistogamy genes in barley. Theoretical and Applied Genetics, 2004, 109: 480-487.

[8] Theissen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-471.

[9] 葛  磊, 谭克辉, 种  康, 许智宏. 水稻花发育基因调控的研究进展. 科学通报, 2001, 46(9): 705-712.

Ge L, Tan K H, Zhong K, Xu Z H. Research progress on flower development genes in rice. Chinese Science Bulletin, 2001, 46(9): 705-712. (in Chinese)

[10] Kyozuka J, Takeshi K, Masakazu M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box gene with similarity to Arabidopsis class A, B and C genes. Plant and Cell Physiology, 2000, 41(6): 710-718.

[11] Kang H G, Jeon J S, Lee S C, An G. Identification of class B and class C floral organ identity genes from rice. Plant Molecular Biology,1998, 38: 1021-1029.

[12] Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705-718.

[13] Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analyses of dominant negative mutations. The Plant Cell, 1996, 8: 831-845.

[14] Yamaguehi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell, 2006, 18(1): 15-28.

[15] Lopez-Dee Z P, Wittich P, Pe M E, Rigola D, Buono I D, Gorla M S, Kater M M, Colombo L. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Developmental Genetics, 1999, 25: 237-244.

[16] Jeon J S, Jang S, Lee S, Nam J,Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile l is a homeotic mutation in a rice MADS-box gene affecting rice flower development. The Plant Cell, 2000, 12: 871-884.

[17] Cui R F, Han J K, Zhao S Z, Su K M, Wu F, Du X Q, Xu Q J,Chong  K, TheiBen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 2010, 61: 767-781.

[18] Won Y J, Koh H J, Heu M H. Inheritance of cleistogamy and its interrelationship between other agronomic characters in rice. Korean Journal of Breeding, 1998, 30: 42-46.

[19] Yoshida H, Itoh J I, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y. Superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. Plant Biotechnology Journal, 2007, 5: 835-846.

[20] Maeng J Y, Won Y J, Piao R H, Cho Y L, Jiang W Z, Chin J H, Koh H J. Molecular mapping of a gene ‘ld(t)’controlling cleistogamy in rice. Theoretical and Applied Genetics, 2006, 112: 1429-1433.

[21] 卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47-48.

Lu Y J, Zheng K L. A simple method for isolation of rice DNA. Chinese Journal of Rice Science, 1992, 6(1): 47-48. (in Chinese)

[22] 曾生元, 郭  旻, 李  敏, 孟庆彩, 胡  群, 龚志云, 顾铭洪, 严长杰. 一个水稻动态窄叶突变体的鉴定和基因定位. 科学通报, 2010, 55(21): 2106-2111.

Zeng S Y, Guo M, Li M, Meng Q C, Hu Q, Gong Z Y, Gu M H, Yan C J. Identification and gene mapping of a rice dynamic narrow leaf mutant. Chinese Science Bulletin, 2010, 55(21): 2106-2111. (in Chinese)

[23] Michelmore R W, Paran I, Kesseli K V. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 9828-9832.

[24] Ellstrand N C. Current knowledge of gene flow in plants: Implications for transgene flow. Philosophical Transactions of the Royal Society Biological Sciences, 2003, 358: 1163-1170.

[25] Dale P J, Clarke B, Fontes E M. Potential for the environmental impact of transgenic crops. Nature Biotechnology, 2002, 20: 567-574.

[26] 孔  宁, 王旭静, 唐巧玲, 王志兴, 贾士荣. 生物学措施限控基因漂流的研究进展. 中国农业科技导报, 2008, 10(3): 24-30.

Kong N, Wang X J, Tang Q L, Wang Z X, Jia S R. Progress on the biological containment of transgene flow. Journal of Agricultural Science and Technology, 2008, 10(3): 24-30. (in Chinese)

[27] Mariani C, deBluckeleer M, Truettner J, Jan L, Robert B G. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347: 737-741.

[28] van der Meer I M, Spelt C E, Mol J N M, Stuitje A R. Promoter analysis of the halcone synthase (chsA) gene of petunia hybrid: A 67bp promoter region directs flower-specific expression. Plant Molecular Biology, 1990, 15: 95-109.

[29] Koning A, Jones A, Fillatti J J, Comai L, Lassner M W. Arrest of embryo development in Brassica napus mediated by modified Pseudomonas aeruginosa exotoxin A. Plant Molecular Biology, 1992, 18: 247-258.

[30] Kuvshinov V, Koivu K, Kanerva A, Pehu E. Molecular control of transgene escape from genetically modified plants. Plant Science, 2001, 160: 517-522.

[31] Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M. Isolation of candidate genes for apomixis in Poa pratensis L.. Plant Molecular Biology, 2004, 56: 879-894.

[32] Singh M, Burson B L, Finlayson S A. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). Plant Molecular Biology, 2007, 64: 673-682.

[33] Chen L, Pradhan S, Evans Jr T C. Herbicide resistance from a divided EPSPS protein: The split Synechocystis DnaE intein as an in vivo affinity domain. Gene, 2001, 263: 39-48.

[34] Ye G N, Hajdukiewicz P T, Broyles D, Rodriguez D, Xu C W, Nehra N, Staub J M. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. The Plant Journal, 2001, 25(3): 261-270.

[35] Keenan R J, Stemmer W P. Nontransgenic crops from transgenic plants. Nature Biotechnology, 2002, 20: 215-216.

[36] Luo K M, Duan H, Zhao D G, Zheng X L, Deng W, Chen Y Q, StewartJr C N, McAvoy R, Jiang X N, Wu Y H, He A G, Pei Y, Li Y. ‘GM-gene-deletor’: Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seeds of tobacco plants. Plant Biotechnology Journal, 2007, 5(2): 263-274.

[37] SaxenaK B, Singh L, Ariyanayagam R P. Role of partial cleis-togamy in maintaining genetic purity of pigeon pea. Euphytica, 1993, 66: 225-229.

[38] Morinaga S I, Nagano A J, Miyazaki S, Kubo M, Demura T, Fukuda  H, Sakai S, Hasebe M. Ecogenomics of cleistogamous and chasmogamous flowering: Genome-wide gene expression patterns from cross-species microarray analysis in Cardamine kokaiensis (Brassicaceae). Journal of Ecology, 2008, 96(5): 1086-1097.

[39] Chhabra A K, Sethi S K. Inheritance of cleistogamic flowering in durum wheat (Triticum durum). Euphytica, 1991, 55: 147-150.
[1] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[2] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[3] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[4] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[5] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[6] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[7] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[8] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[9] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[10] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[11] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[12] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[13] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
[14] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[15] XIE Jia, ZHANG XiaoBo, TAO YiRan, XIONG YuZhen, ZHOU Qian, SUN Ying, YANG ZhengLin, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Shorten Panicle and Seed Mutant sps1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1617-1626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!