Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2568-2579.doi: 10.3864/j.issn.0578-1752.2012.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis and QTL Mapping of Pod-Seed Traits in Soybean Under Different Environments

 LIANG  Hui-Zhen, YU  Yong-Liang, YANG  Hong-Qi, ZHANG  Hai-Yang, DONG  Wei, LI  Cai-Yun, GONG  Peng-Tao, LIU  Xue-Yi, FANG  Xuan-Jun   

  1. 1.河南省农业科学院芝麻研究中心,郑州 450002
    2.海南省热带农业资源开发利用研究所,海南三亚 572025
    3.山西省农业科学院经济作物研究所,山西汾阳 032200
  • Received:2012-01-30 Online:2012-07-01 Published:2012-04-05

Abstract: 【Objective】 Soybean [Glycine mar (L.) Merr.] pod-seed trait is one of the most important traits related with yields. In this paper, the relationship between soybean pod-seed traits and yields was studied, the QTLs controlling soybean pod-seed traits were mapped, and the soybean pod-seed trait molecular genetic mechanism was revealed. 【Method】Based on three years and two environments data, a recombinant line population of 474 F2:8:11 lines from a cross of Jindou 23 and ZDD2315 was used for analyzing and mapping QTLs of soybean pod-seed related traits. 【Result】The results of the molecular genetic analysis indicated that the field traits have a significant positive correlation or extreme significant positive correlation with 100-grain-weight, grain length, single grain weight, two-grain pod and three-grain pod. According to three years and two environments data, the authors mapped six QTLs of field traits related, four QTLs of 100-grain-weight, ten QTLs of single line grain weight, two QTLs of grain width, five QTLs of grain length, seven QTLs of one-grain pod, five two-grain pod, seven QTLs of three-grain pod and five QTLs of four-grain pod. 【Conclusion】The identification of consistent QTLs under different environments and in different years will be used as candidate chromosome regions, which will help to improve the efficiency of selection for pod-seed related traits in soybean through molecular marker-assisted selection.

Key words: soybean, pod-seed traits, genetic, QTL

[1] Boerma H R, Specht J E. Soybeans: Improvement, Production and Uses: 3rd ed. Madison, Wisconsin, USA: SSSA Publishers, 2004: 303-396.

[2] Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335(20): 721-726.

[3] Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics, 1991, 83(2): 141-145.

[4] 刘宗华, 汤继华, 卫晓轶, 王春丽, 田国伟, 胡彦民, 陈伟程. 氮胁迫和正常条件下玉米穗部性状的QTL分析. 中国农业科学, 2007, 40(11): 2409-2417.

Liu Z H, Tang J H, Wei X Y, Wang C L, Tian G W, Hu Y M, Chen W C. QTL mapping of ear traits under low and high nitrogen conditions in maize. Scientia Agricultura Sinica, 2007, 40(11): 2409-2417. (in Chinese)

[5] 周  蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35(1): 57-65.

Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S P, Qiu D Z, Zhou X A, Wu J S. QTL analysis of lodging and related traits in soybean. Acta Agronomica Sinica, 2009, 35(1): 57-65. (in Chinese)

[6] 万  昆, 姜成喜, 刘章熊, 付亚书, 朱友林, 陈维元, 邱丽娟. 大豆株高QTL 定位研究. 大豆科学, 2009, 28(5): 791-794.

Wan K, Jiang C X, Liu Z X, Fu Y S, Zhu Y L, Chen W Y, Qiu L J. Mapping QTL associated with plant height in soybean (Glycine max). Soybean Science, 2009, 28(5): 791-794. (in Chinese)

[7] Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics, 2006, 114(1): 67-80.

[8] TanhuanpääP K, Vilkki J P, Vilkki H J. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theoretical and Applied Genetics, 1996, 92(8): 952-956.

[9] Jiang C, Wright R J, Woo S S, DelMonte T A, Paterson A H. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theoretical and Applied Genetics, 2000, 100(3/4): 409-418.

[10] Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype×environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics, 2003, 106: 384-396.

[11] Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat. Journal of Genetics and Genomics, 2008, 35: 119-127.

[12] Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theoretical and Applied Genetics, 1998, 96: 933-940.

[13] Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.

[14] Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theoretical and Applied Genetics, 2001, 103: 702-709.

[15] Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Clanzio S R. Molecular marker analysis of seed size in soybean. Crop Science, 2003, 43: 68-74.

[16] Mian M A R, Bailey M A, Tamulonis J P. Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics, 1996, 93: 1011-1016.

[17] Reyna V, Sneller C H. Evaluation of marker assisted introgression of yield QTL alleles into adapted soybean. Crop Science, 2001, 41: 1317-1321.

[18] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics, 2004, 109: 552-561.

[19] 薛永国, 刘丽君, 杨  喆, 高明杰, 张  雷. 大豆油分含量QTL分析. 东北农业大学学报, 2007, 38(6): 721-724.

Xue Y G, Liu L J, Yang Z, Gao M J, Zhang L. Soybean oil QTL analysis. Journal of Northeast Agricultural University, 2007, 38(6): 721-724. (in Chinese)

[20] Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010, 9(8): 1108-1116.

[21] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr. ) genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004, 108: 1131-1139.

[22] 吴晓雷, 王永军, 贺超英, 陈受宜, 盖钧镒, 王学臣. 大豆重要农艺性状的QTL分析. 遗传学报, 2001, 28(10) : 947-955.

Wu X L, Wang Y J, He C Y, Chen S Y, Gai J Y, Wang X C. QTLs mapping of some agronomic traits of soybean. Journal of Genetics and Genomics, 2001, 28(10): 947-955. (in Chinese)

[23] 彭玉华, 朱健超, 杨国保, 袁建中. 大豆叶形分布与四粒荚. 作物学报, 1994, 20(4): 501-503.

Peng Y H, Zhu J C, Yang G B, Yuan J Z. Relation of soybean leaf shape distribution to four seeded pods. Acta Agronomica Sinica, 1994, 20(4): 501-503. (in Chinese)

[24] 周新安, 王贤智, 吴学军, 蔡淑平, 沙爱华, 邱德珍, 张晓娟. 大豆重组自交系群体三、四粒荚变异及其与产量的关系. 中国油料作物学报, 2005, 27(4): 22-25.

Zhou X A, Wang X Z, Wu X J, Cai S P, Sha A H, Qiu D Z, Zhang X J. Relation of three seed and four seed pods with yield of RIL in soybeans. Chinese Journal of Oil Crop Sciences, 2005, 27(4): 22-25. (in Chinese)

[25] Lincoln S E, Daly M J, Lander E S. Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL Version 1. 1: A Tutorial and Reference Manual. 2nd ed. Cambridge Mass: Whitehead Institute for Biometrical Research, 1993.

[26] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971.

[27] 刘  华, 王  慧, 李  群, 徐  鹏, 盖钧镒, 喻德跃. 大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位. 中国农业科学, 2005, 38(7): 1369-1372.

Liu H, Wang H, Li Q, Xu P, Gai J Y, Yu D Y. Inheritance analysis and mapping QTLs related to cotton worm resistance in soybeans. Scientia Agricultura Sinica, 2005, 38(7): 1369-1372. (in Chinese)

[28] 郑文静, 刘志恒, 张燕之, 刘  欣, 王昌华, 赵家铭. 水稻恢复系C161对条纹叶枯病的抗性遗传及相关QTL定位研究. 沈阳农业大学学报, 2010, 41(1): 3-7.

Zheng W J, Liu Z H, Zhang Y Z, Liu X, Wang C H, Zhao J M. Inheritance analysis and mapping QTLs related to rice stripe resistsnce in restores line C161. Journal of Shenyang Agricultural University, 2010, 41(1): 3-7. (in Chinese)

[29] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL×environment interactions in rice: Ⅰ. Heading date and plant height. Theoretical and Applied Genetics, 2003, 108(1): 141-153.

[30] 吴晓雷, 王永军, 贺超英, 陈受宜, 盖钧镒, 王学臣. 大豆重要农艺性状的QTL分析. 遗传学报, 2001, 28(10): 947-955.

Wu X L, Wang Y J, He C Y, Chen S Y, Gai J Y, Wang X C. QTLs mapping of some agronomic traits of soybean. Acta Genetica Sinica, 2001, 28(10): 947-955. (in Chinese)

[31] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic trait using recombinant inbred lines of soybean. Crop Science, 1996, 36: 1327-1336.

[32] Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theoretical and Applied Genetics, 2004, 108: 458-467.

[33] Mansur L M, Lark K G, Kross H K. Olivera L. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean. Theoretical and Applied Genetics, 1993, 86: 907-913.

[34] Mian M A R, Bailey M A, Tamulonis J P. Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics, 1996, 93(7): 1011-1016.

[35] Orf J H, Chase K, Jarvik. Genetics of soybean agronomic traits: 1. Coparison of three related recombination inbred populations. Crop Science, 1999, 39: 1642-1651.

[36] Maugham P J, Saghai M A, Buss G R. Molecular marker analysis of seed weight: Genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theoretical and Applied Genetics, 1996, 93(4): 574-579.

[37] Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein cincentration in soybean. Crop Science, 2000, 40: 1438-1444.

[38] Specht J E, Chase K, Macrander M. Soybean response to water: A QTL analysis of drought tolerance. Crop Science, 2001, 41: 493-509.

[39] 李向华, 常汝镇. 中国春大豆品种主要性状相关及遗传潜力分析. 大豆科学, 1998, 1: 28-32.

Li X H, Chang R Z. Genetic variability of agronomic and chemical traits of yhe spring soybean varieties in China. Soybean Science, 1998, 1: 28-32. (in Chinese)

[40] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa ×Oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical and Applied Genetics, 2001, 102: 41-52.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[4] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[5] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[9] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[10] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[11] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[12] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[13] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[14] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[15] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!