Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1587-1600.doi: 10.3864/j.issn.0578-1752.2019.09.010

• HORTICULTURE • Previous Articles     Next Articles

Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis

GONG ChengSheng,ZHAO ShengJie,LU XuQiang,HE Nan,ZHU HongJu,DOU JunLing,YUAN PingLi,LI BingBing,LIU WenGe()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Cucurbits and Fruits Improvement Center, Zhengzhou 450009
  • Received:2018-10-28 Accepted:2018-02-17 Online:2019-05-01 Published:2019-05-16
  • Contact: WenGe LIU E-mail:lwgwm@163.com

Abstract:

【Objective】Wax powder is the first protective barrier for plants to resist external stress. In order to find out the physiological and biochemical mechanism of this trait and to get candidate genes, the structure, chemical compositions and inheritance of wax powder on watermelon fruit epidermis were investigated in this research, and the candidate genes were predicted. 【Method】Six-generation populations (P1, P2, F1, F2, BC1P1, and BC1P2) were constructed by crossing the inbred line ‘Meijiaxuanhei’ (in glossy) and ‘FH’ (in waxy). Scanning electron microscopy (SEM) was used to observe the structure of wax powder on mature watermelon fruit epidermis. The composition of wax powder was determined by gas chromatography-mass spectrometry (GC-MS), and the contents of different chemical components were quantitatively calculated based on the peak area. The wax powder trait was preliminary mapped by BSA-seq, and BLAST software was used to annotate the coding genes in the localization interval in many databases. By analysis of detailed gene annotation information and mutation site, candidate genes were quickly screened. 【Result】The color of wax powder on ‘Meijiaxuanhei’ fruit was gray-white, and the structure was compact plate shaped with about 5 μm in length, while ‘FH’ fruit was found smooth epidermis and no similar structure. 24 kinds of aliphatic compounds were detected in the wax powder, which were classified as hydrocarbons, alcohols, esters, acids, phenols and aldehydes. There were 10 kinds of hydrocarbons were found, which accounted for 77.72% of the total effective chemical extracts of epidermal wax powder and chain length ranged from C17 to C36. Among them, most of the saturated n-alkanes were C27, C28, C29, C32, C33, C34 and C36, 5 kinds of alcohols accounted for 12.60%, 5 kinds of esters accounted for 0.43%, 2 kinds of acids accounted for 0.53%, 1 kind of phenol accounted for 0.80%, and 1 kind of aldehydes accounted for 3.99%, respectively. The top five chemical components in watermelon wax powder were n-34, n-29, 1,30-triacontanediol, n-33 and n-octacosane. The fruit of F1 and BC1P2 progenies had wax, the segregation of waxy and glossy in F2 progenies corresponded to the Mendelian ratio of 3:1, and the segregation ratio in BC1P1 progenies was 1:1, so it could be concluded that the hereditary mode of waxy was the dominant heredity of single gene, and the waxy type was the dominant character. By SNP and InDel correlation analysis, 3.16-4.84Mb association region of chromosome 1 was obtained, which contained 144 genes, 138 genes in them were functionally annotated, including 10 non-synonymous mutations and 1 frameshift mutation. Combining with the literature reports, there were five non-synonymous mutation genes might be related to the formation of watermelon epidermal wax powder: Cla002367 was an enoyl ACP-reductase (ECR) gene, which was essential for the synthesis of extra-long chain fatty acids. Cla011514, Cla002337 and Cla002342 were cytochrome P450 (CYP) family genes, and some proteins encoded by the CYP family genes could catalyze the formation of aliphatic compounds through alkyl hydroxylation and other reactions; Cla002353 gene annotation information was ABC transporter, and ABC transporters were closely related to the transport of waxy molecules.【Conclusion】Wax powder on watermelon fruit epidermis was a plate structure, which was mainly composed of aliphatic compounds derived from long chain fatty acids. The trait conformed to the single gene inheritance model, and wax powder was dominant. The association region of chromosome 1 in the range of 1.68Mb was obtained by BSA correlation analysis. 5 non-synonymous mutation genes Cla002367, Cla011514, Cla002337, Cla002342 and Cla002353 were predicted as candidate genes for wax powder on watermelon fruit epidermis.

Key words: watermelon, wax powder, epidermis structure, chemical compositions, genetic analysis, gene mapping

Fig. 1

The morphology comparison of ripe watermelon fruit epidermis A: In glossy watermelon inbred line ‘Meijiaxuanhei’; B: In waxy watermelon inbred line ‘FH’"

Fig. 2

Wax powder structure of watermelon fruit epidermis under scanning electron microscope A: ‘Meijiaxuanhei’fruit epidermis (1000×); B: ‘FH’ fruit epidermis (1000×); C: ‘Meijiaxuanhei’ fruit epidermis (5000×); D: ‘FH’ fruit epidermis (5000×)"

Fig. 3

Total ion chromatograph of GC-MS for compounds in epicuticular wax of watermelon fruit"

Table 1

Composition and relative content of wax powder from watermelon fruit epidermis"

化合物类别
Categories
化合物名称
Compounds
保留时间
Retention time (min)
相对含量
Relative content (%)
正二十四烷* Tetracosane* 17.20
烃类
Hydrocarbons
2,6,10-三甲基十四烷 Tetradecane,2,6,10-trimethyl- 4.92 0.05
3-乙基-5-(2-乙基丁基)十八烷
Octadecane, 3-ethyl-5-(2-ethylbutyl)-
19.00
0.01
正二十八烷 Octacosane 23.45 5.89
正二十九烷 Nonacosane 27.92 16.24
17-三十五烯 17-Pentatriacontene 28.58 0.60
正二十七烷 Heptacosane 29.90 1.14
正三十四烷 Tetratriacontane 32.31 40.76
正三十二烷 Dotriacontane 34.02 1.07
正三十三烷 Tritriacontane 36.12 10.67
正三十六烷 Hexatriacontane 39.79 0.93
酯类
Esters
(E)-3,7-二甲基-2,6-辛二烯醇3-甲基丁酸酯
Geranyl isovalerate
5.28
0.10
顺式-9-十八碳烯酸-2-苯基-1,3-二氧杂环己烷-4-甲基酯
9-Octadecenoic acid, (2-phenyl-1,3-dioxolan-4-yl)methyl ester, cis-
7.58
0.09
俞酸甘油酯 Docosanoic acid, 1,2,3-propanetriyl ester 35.83 0.11
胆酸乙酯 Ethyl iso-allocholate 12.21 0.05
十八烯酸-3(十八烷氧基)丙酯
Oleic acid, 3-(octadecyloxy)propyl ester
40.79
0.07
醇类
Alcohols
1-三十七烷醇 1-Heptatriacotanol 9.64 0.15
E,E,Z-1,3,12-十九烯-4,14-二醇
E,E,Z-1,3,12-Nonadecatriene-4,14-diol
13.04
0.21
1,30-三十烷二醇 1,30-Triacontanediol 34.99 11.55
1-三十五醇 1-Pentatriacontanol 36.86 0.48
乙酰氧基-7,8-环氧羊毛甾烷-11-醇
7,8-Epoxylanostan-11-ol, 3-acetoxy-
37.58
0.21
酸类
Acids
顺式-1-二十碳烯酸 cis-13-Eicosenoic acid 6.83 0.33
五氟丙酸八碳五烯酸Octatriacontyl pentafluoropropionate 40.29 0.20
酚类Phenols 2,4-二叔丁基苯酚Phenol,2,4-bis(1,1-dimethylethy)- 5.701 0.80
醛类Aldehyde 十八醛 Octadecanal 26.42 3.99

Table 2

Statistics of plant separation in six generations population"

世代
Generations
植株总数
Number of total plants
有蜡粉株数
Number of plants with wax
无蜡粉株数
Number of wax-free plants
有﹕无
Ratios
P
P value
卡方值
χ2 values
P1 50 - 50
P2 50 50 -
F1 50 50 -
F2 714 529 185 2.86:1 0.57 0.32
BC1P1 279 150 129 1.16:1 0.21 1.58
BC1P2 50 50 -

Fig. 4

ED and delta (SNP-index) correlation analysis chart based on SNP"

Fig. 5

ED and delta (InDel-index) correlation analysis based on InDel"

Fig. 6

KEGG functional classification of genes in candidate regions C1: Endocytosis; C2: Regulation of autophagy; G1: Base excision repair; G2: DNA replication; G3: Homologous recombination; G4: Mismatch repair; G5: Nucleotide excision repair; G6: Aminoacyl-tRNA biosynthesis; G7: Ribosome; M1: Cysteine and methionine metabolism; M2: Glycine, serine and threonine metabolism; M3: Phenylalanine metabolism; M4: Tyrosine metabolism; M5: Isoquinoline alkaloid biosynthesis; M6: Tropane, piperidine and pyridine alkaloid biosynthesis; M7: Amino sugar and nucleotide sugar metabolism; M8: Fructose and mannose metabolism; M9: Galactose metabolism; M10: Glycolysis / Gluconeogenesis; M11: Pentose phosphate pathway; M12: Propanoate metabolism; M13: Pyruvate metabolism; M14: Starch and sucrose metabolism; M15: Oxidative phosphorylation; M16: Biosynthesis of amino acids; M17: Carbon metabolism; M18: Fatty acid metabolism; M19: Fatty acid biosynthesis; M20: Glycerophospholipid metabolism; M21: beta-Alanine metabolism; M22: Diterpenoid biosynthesis; M23: Purine metabolism; M24: Pyrimidine metabolism"

Fig. 7

COG functional classification of genes in candidate regions A: RNA processing and modification; B: Chromatin structure and dynamics; C: Energy production and conversion; D: Cell cycle control, cell division, chromosome partitioning; E: Amino acid transport and metabolism; F: Nucleotide transport and metabolism; G: Carbohydrate transport and metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and metabolism; J: Translation, ribosomal motility; K: Transcription; L: Replication, recombination and repair; M: Cell wall/memberance/envelope biogenesis; N: Cell motility; O: Posttranslational modification, protein turnover, chaperones; P: Inorganic ion transport and metabolism; Q: Secondary metabolites biosynthesis, transport and catabolixm; R: General function prediction only; S: Function unknown; T: Signal transduction mechanisms; U: Intracellular trafficking, secretion, and vesicular transport; V: Defense mechanisms; W: Extracellular structures; Y: Nuclear structure; Z: Cytoskeleton"

Table 3

The statistical results of gene function annotation in candidate regions"

功能注释数据库Annotated_databases 有注释信息基因数
Annotated information gene number
存在非同义突变的基因数Number of genes with nonsynonymous mutations 存在移码突变的基因数
Number of genes with frameshift mutation
GO 42 6 0
KEGG 46 4 0
COG 63 8 1
NR 137 10 1
NT 133 10 1
trEMBL 136 10 1
SwissProt 118 10 1
Total 138 10 1

Table 4

Functional annotation of non synonymous mutations and frameshift mutations in candidate regions"

突变类型 Mutation type 基因 Gene Id 基因注释 Gene annotation
非同义突变
Non synonymous mutation
Cla011514 细胞色素P450 Cytochrome P450
Cla011577 乳酸/苹果酸脱氢酶 Lactate/malate dehydrogenase,
Cla011542 铜胺氧化酶,酶结构域 Copper amine oxidase, enzyme domain
Cla011561 3-Oxoacyl-[酰基载体蛋白(ACP)]合成酶Ⅲ
3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III
Cla002342 含IPRO结构域(S)的IPRO1128细胞色素P450
Contains Inerpro domain(s) IPR001128 Cytochrome P450
Cla002367 烯酰基-(酰基载体蛋白)还原酶 Enoyl-(Acyl carrier protein) reductase
Cla002326 木聚糖酶抑制剂N端 Xylanase inhibitor N-terminal
Cla002353 ABC转运体 ABC transporter
Cla002337 细胞色素P450 Cytochrome P450
Cla011554 无顶端分生组织(NAM)蛋白 No apical meristem (NAM) protein
移码突变
Frameshift mutation
Cla002327 rRNA/tRNA 2′-O-甲基转移酶类纤维蛋白样蛋白
rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein

Fig. 8

Sequence polymorphisms of the protein sequence of candidate genes between ‘Mwijiaxuanhei’ and ‘FH’ The dotted area and arrows represented protein polymorphisms of candidate genes"

[1] 刘文革, 何楠, 赵胜杰, 路绪强 . 我国西瓜品种选育研究进展. 中国瓜菜, 2016,29(1):1-7.
LIU W G, HE N, ZHAO S J, LU X Q . Advances in watermelon breeding in China. China Cucurbits and Vegetable, 2016,29(1):1-7. (in Chinese)
[2] 王吉明, 尚建立, 李娜, 周丹, 马双武 . 我国西瓜甜瓜种质资源收集、保存与利用研究进展. 中国瓜菜, 2018,31(2):1-6.
WANG J M, SHANG J L, LI N, ZHOU D, MA S W . Collection, preservation, and utilization of germplasm resources of watermelon and melon in China. China Cucurbits and Vegetable, 2018,31(2):1-6. (in Chinese)
[3] 周冰钰, 秦智伟, 周秀艳, 辛明 . 黄瓜种质资源果皮表面光泽性评价. 中国蔬菜, 2013(22):27-31.
ZHOU B Y, QIN Z W, ZHOU X Y, XIN M . Evaluation of fruit surface glossiness in cucumber germplasm. China Vegetables, 2013(22): 27-31. ( in Chinese)
[4] SANCHEZ F J, MANZANARES M, ANDRES E F D . Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. European Journal of Agronomy, 2001,15(1):57-70.
doi: 10.1016/S1161-0301(01)00094-6
[5] JENKS M A, TUTTLE H A, EIGENBRODE S D, FELDMANN K A . Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiology, 1995,108(1):369-377.
[6] JENKS M A, JOLY R J, PETERS P J, RICH P J, AXTELL J D, ASHWORTH E N . Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor(L.) moench. Plant Physiology, 1994,105(4):1239-1245.
[7] BARTHLOTT W, CHRISTOPH N, DAVID C, FRIEDRICH D, IRIS M, INGE T, HILTRUN W . Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society, 1998,126(3):237-260.
doi: 10.1111/boj.1998.126.issue-3
[8] 唐俊, 刘东明, 刘泽洲, 杨丽梅, 方智远, 刘玉梅, 庄木, 张扬勇, 孙培田 . 几份甘蓝蜡粉缺失突变体特征特性的研究. 园艺学报, 2015,42(6):1093-1102.
doi: 10.16420/j.issn.0513-353x.2015-0048
TANG J, LIU D M, LIU Z Z, YANG L M, FANG Z Y, LIU Y M, ZHUANG M, ZHANG Y Y, SUN P T . Studies on characteristics of several glossy mutants in cabbage. Acta Horticulturae Sinica, 2015,42(6):1093-1102. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0048
[9] 王金秋, 何义仲, 徐坤洋, 罗怿, 盛玲, 罗焘, 刘欢, 程运江 . 三种类型柑橘成熟果实表面蜡质分析. 中国农业科学, 2016,49(10):1936-1945.
WANG J Q, HE Y Z, XU K Y, LUO Y, SHENG L, LUO T, LIU H, CHENG Y J . Characterization of mature fruit surface waxes of three cultivated citrus species. Scientia Agricultura Sinica, 2016,49(10):1936-1945. (in Chinese)
[10] 刘东明, 杨丽梅, 唐俊, 刘泽洲, 方智远, 刘玉梅, 庄木, 张扬勇, 孙培田, 李景涛 . 甘蓝无蜡粉亮绿突变体材料LD10遗传规律及分子标记研究. 中国蔬菜, 2014(12):21-26.
LIU D M, YANG L M, TANG J, LIU Z Z, FANG Z Y, LIU Y M, ZHUANG M, ZHANG Y Y, SUN P T, LI J T . Studies on inheritance and molecular marker in cabbage glossy wax-less mutant LD10. China Vegetables, 2014(12):21-26. (in Chinese)
[11] 张曦, 王秋实, 邹春蕾, 刘志勇, 王一衡, 冯辉 . 大白菜花茎蜡粉基因的遗传分析与初步定位. 分子植物育种, 2013,11(6):804-808.
ZHANG X, WANG Q S, ZOU C L, LIU Z Y, WANG Y H, FENG H . Genetic analysis and preliminary mapping of wax gene on stem in Chinese cabbage. Molecular Plant Breeding, 2013,11(6):804-808. (in Chinese)
[12] ROSSAK M, SMITH M, KUNST L . Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology, 2001,46(6):717-725.
[13] ZHENG H, ROWLAND O, KUNST L . Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005,17(5):1467-1481.
[14] MCNEVIN J P, WOODWARD W, HANNOUFA A, FELDMANN K A, LEMIEUX B . Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome, 1993,36(3):610-618.
[15] BEMARD A, DOMERGUE F, PASCAL S, JETTER R, RENNE C . Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012,24(7):3106.
[16] 罗倩, 瞿国润, 吕霁烊, 石建新 . 植物表面蜡质测定中气质检测条件的优化. 实验室研究与探索, 2013,32(10):287-290.
LUO Q, QU G R, LV J Y, SHI J X . Optimization of GC-MS conditions for plant cuticular wax determination. Research and Exploration in Laboratory, 2013,32(10):287-290. (in Chinese)
[17] GUO S G, ZHANG J G, SUN H H ,et al. The draft genome of watermelon(Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013,45:51-58.
[18] HILL J T, DEMAREST B L, BISGROVE B W, GORSI B, SU Y C, YOST H J . MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23(4):687.
[19] 周会玲, 李嘉瑞 . 葡萄果实组织结构与耐贮性的关系. 园艺学报, 2006,33(1):28-32.
ZHOU H L, LI J R . The relationship between fruit texture and storage character in grapes. Acta Horticulturae Sinica, 2006,33(1):28-32. (in Chinese)
[20] 李宏建, 刘志, 王宏, 徐贵轩, 宋哲, 何明莉, 张春波 . 苹果果实组织结构与果实失重率和硬度变化的关系. 果树学报, 2013,30(5):753-758.
LI H J, LIU Z, WANG H, XU G X, SONG Z, HE M L, ZHANG C B . Study on the relationship between organizational structure and firmness, weight-lose rate of apple fruit. Journal of Fruit Science, 2013,30(5):753-758. (in Chinese)
[21] 于海宁, 田英, 方媛, 彭励 . 植物角质膜的结构、组成和生物学功能研究进展. 生命科学, 2010 , 22(8):729-735.
YU H N, TIAN Y, FANG Y, PENG L . Progress on the structure, composition and biological function of the plant cuticle membrane. Chinese Bulletin of Life Sciences, 2010,22(8):729-735. (in Chinese)
[22] BAUER S, SCHULTE E, THIER H P . Composition of the surface waxes from bell pepper and eggplant. European Food Research & Technology, 2005,220(1):5-10.
[23] 杜龙岗, 王美兴 . 玉米SLAF标记的开发及其在玉米果皮纤维素含量BSA分析中的应用. 中国农业科学, 2018,51(8):1421-1430.
DU L G, WANG M X . SLAF-marker development and its application in BSA analysis of cellulose content in pericarp of maize kernel. Scientia Agricultura Sinica, 2018,51(8):1421-1430. (in Chinese)
[24] 吴俊清, 赵静, 秦美玲, 任延靖, 张华敏, 代子卉, 郝玲玉, 张鲁刚 . 大白菜紫心性状遗传规律分析及其基因初步定位. 园艺学报, 2016,43(6):1079-1088.
doi: 10.16420/j.issn.0513-353x.2016-0240
WU J Q, ZHAO J, QIN M L, REN Y J, ZHANG H M, DAI Z H, HAO L Y, ZHANG L G . Genetic analysis and primary mapping of the purple gene in purple heading Chinese cabbage. Acta Horticulturae Sinica, 2016,43(6):1079-1088. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0240
[25] 吴俊, 束怀瑞, 张开春, 张学宁, 姜立杰, 魏振林 . 桃果实非酸/酸性状AFLP标记的筛选. 果树学报, 2004,21(4):298-301.
WU J, SHU H R, ZHANG K C, ZHANG X N, JIANG L J, WEI Z L . Identification of AFLP markers linked to No-acid/acid fruit traits in peach. Journal of Fruit Science, 2004,21(4):298-301. (in Chinese)
[26] 张尧锋, 张冬青, 余华胜, 林宝刚, 华水金, 丁厚栋, 傅鹰 . 基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位. 中国农业科学, 2018,51(16):3029-3039.
ZHANG Y F, ZHANG D Q, YU H S, LIN B G, HUA S J, DING H D, FU Y . Location and mapping of the determinate growth habit of Brassica napus by Bulked Segregant Analysis (BSA) using whole genome re-sequencing. Scientia Agricultura Sinica, 2018,51(16):3029-3039. (in Chinese)
[27] DOU J L, ZHAO S J, LU X Q, HE N, ZHANG L, ALI A, KUANG H H, LIU W G . Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon(Citrullus lanatus L.). Theoretical & Applied Genetics, 2018,131(4):947-958.
[28] KOHLWEIN S D, EDER S, OH C S, MARTIN C E, GABLE K, BACIKOVA D, DUNN T . Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in saccharomyces cerevisiae. Molecular & Cellular Biology, 2001,21(1):109.
[29] GABLE K, GARTON S, NAPIER J A, DUNN T M . Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. Journal of Experimental Botany, 2004,55(396):543-545.
[30] 赵利, 陈桂信, 王玉珍, 吕恃衡, 潘东明, 姜翠翠 . 木奈叶片中烯脂酰-CoA还原酶基因PsECR的筛选及其启动子的克隆表达分析. 果树学报, 2014,31(4):574-582.
ZHAO L, CHEN G X, WANG Y Z, LV S H, PAN D M, JIANG C C . Isolation of full-length cDNA of ECR and its promoter from Nai’s(Prunus salicina) leaf and its expression. Journal of Fruit Science, 2014, 31(4):574-582. (in Chinese)
[31] HASLAM T M, MANAS-FERNÁNDEZ A, ZHAO L F, KUNST L . Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology, 2012,160(3):1164.
[32] ESTABROOK R W . The remarkable P450s: A historical overview of these versatile hemeprotein catalysts. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 1996,10(2):202-204.
doi: 10.1096/fasebj.10.2.8641552
[33] KIM S, DALE B E . Global potential bioethanol production from wasted crops and crop residues. Biomass & Bioenergy, 2004,26(4):361-375.
[34] 姚学峰, 宋怡铃 . 细胞色素P450 BM3催化正十六烷动力学计算. 生物信息学, 2011,9(2):134-137.
YAO X F, SONG Y L . Binding dynamics calculation for cytochrome P450 BM3 catalyzing n-hexadecane. Chinese Journal of Bioinformatics, 2011,9(2):134-137. (in Chinese)
[35] 王斌, 贾先勇, 罗蕾蕾, 李品, 吴让明 . 细胞色素P450 2B4的结构及其催化反应. 氨基酸和生物资源, 2014,36(1):8-13, 31.
WANG B, JIA X Y, LUO L L, LI P, WU R M . The structure and catalytic reaction of cytochrome P450 2B4. Amino Acids and Biotic Resources, 2014,36(1):8-13, 31. (in Chinese)
[36] MEUNIER B, DE VISSER S P, SHAIK S . Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews, 2004, 104(9):3947.
[37] BIRD D, BEISSON F, BRIGHAM A, SHIN J, GREER S, JETTER R, KUNST L, WU X, YEPHREMOVA, SAMUELS L . Characterization of ArabidopsisABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant Journal, 2007,52(3):485-498.
[38] 陈伟, 刘德春, 杨莉, 刘山蓓, 刘勇 . 植物表皮蜡质及相关基因研究进展. 植物生理学报, 2016,52(8):1117-1127.
CHEN W, LIU D C, YANG L, LIU S B, LIU Y . Research progress of plant cuticular wax and related genes. Plant Physiology Journal, 2016,52(8):1117-1127. (in Chinese)
[1] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[2] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[5] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[6] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[7] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[8] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[9] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[10] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[11] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[12] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[13] LIANG HuiZhen,XU LanJie,DONG Wei,YU YongLiang,YANG HongQi,TAN ZhengWei,LI Lei,LIU XinMei. Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(11): 2149-2160.
[14] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[15] BAI TuanHui,LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui. Screening and Expression Analysis of Co Candidate Genes in Columnar Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4350-4363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!