Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4350-4363.doi: 10.3864/j.issn.0578-1752.2019.23.015

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF APPLE • Previous Articles     Next Articles

Screening and Expression Analysis of Co Candidate Genes in Columnar Apple

BAI TuanHui(),LI Li,ZHENG XianBo,WANG MiaoMiao,SONG ShangWei,JIAO Jian,SONG ChunHui()   

  1. College of Horticulture, Henan Agricultural University/Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002
  • Received:2019-07-17 Accepted:2019-09-06 Online:2019-12-01 Published:2019-12-01
  • Contact: TuanHui BAI,ChunHui SONG E-mail:tuanhuibai88@163.com;songchunhui060305@126.com

Abstract:

【Objective】Columnar growth in apple (Malus × domestica Borkh.) is a special type of dwarf mutation. Due to short internodes and lateral branches, a limited canopy and minimal pruning, columnar apple trees are well adapted to high density plantings. Based on the fine mapping of Co, the genes in the localization interval were screened, which laid a foundation for elucidating the molecular mechanism of columnar apple formation and breeding new varieties of columnar apples.【Method】Based on the latest apple genome data and transcriptome information, the buds, stem tips and leaves of columnar apple Wujia, Runtai No.1 and standard apple Fuji and Huashuo were used as test materials, and the genes between the fine mapping Co gene in interval from 27.66 Mb to 29.05 Mb were annotated and predicted. The coding sequence of the target gene was selected to detect primer specificity by RT-PCR, the real-time quantitative PCR was used to analyze the expression characteristics of target genes in different tissues and organs, and differential genes were screened out as candidate genes.【Result】The results showed that there were 67 genes between 27.66 Mb and 29.05 Mb in chromosome 10, 12 of which were non-coding RNAs (ncRNA), and the rest were genes with encoding proteins. According to the columnar and standard apple RNA-seq, there were 25 genes with more than 1 fold difference, 13 of which were up-regulated, and 12 genes were down-regulated in columnar apples. Among the 14 predicted genes, there were significant differences in the relative expression of the four genes MD10G1184100, MD10G1185400, MD10G1185600 and MD10G1190500 between shoot tips and lateral shoot tips in columnar and standard apples. The relative expression levels of MD10G1184100 and MD10G1185600 in the tip of terminal bud of two columnar apples were significantly higher than those of both standard apples. The relative expression of MD10G1185400 and MD10G1190500 genes in the tip of lateral bud of two columnar apples was significantly higher than that of two standard apples, while the expression of MD10G1184100 gene in two columnar apples was significantly lower than that of standard apples. The gene expression patterns of different tissues or organs of four candidate genes were analyzed. The result showed that the expression of MD10G1184100 gene in the roots of columnar apples was significantly higher than that in other tissues. The MD10G1185400 and D10G1185600 genes were significantly expressed in lateral tips in columnar apples, while MD10G1190500 gene was prominently expressed in the terminal bud of columnar apples.【Conclusion】4 genes with significant differences in columnar and standard apple could be regarded as Co candidate genes, which laid a foundation for gene cloning and functional verification and apple tree-oriented genetic improvement.

Key words: apple, columnar trait, gene mapping, gene expression, candidate gene analysis

Table 1

Real-time fluorescence quantitative PCR primers for relative expression of 14 putative genes"

编号
No
基因名称
Gene name
正向及反向引物序列
Forward and reverse primer sequences (5'-3')
扩增产物大小
Amplified product size (bp)
A MD10G1184100 F: AGCAGGGAAGAAGAAGAAGACGC 201
R: GGTCGTGACAGATGACGTGT
B MD10G1185400 F: CTTGCTGAAGGGTTGGGACTGAG 218
R: GAAATAGGCTCAACACCAATCCAA
C MD10G1185600 F: TCAACCACCTCTGCCAAGTC 244
R: GACTGATTTGTCAAGCCCGC
D MD10G1186300 F: CATGAACTCCGGAGATGTGCTTGA 237
R: CTTGTCACCACGGGCTTCTGTC
E MD10G1186400 F: CACAACCAAGCATTCGGATCCT 259
R: TTTGAATCTTTGCGTAGCACTTGGA
F MD10G1187000 F: CGATCTCGGCTTTCTAACCTTGCT 232
R: GTCGTCCGTGCCAACAAAACAT
G MD10G1190500 F: TTCAGTCACCCACAATCGTAAACAA 204
R: ACCTGCCACTACTCCAAACAAAAAC
G MD10G1190700 F: TTGTTGGCGAGATACCGTTAGAAAT 264
R: AGATTACAAAGGCATGAACAAGGGA
I MD10G1191100 F: AGGGTGGGCAGGCTAAATGAC 209
R: GAAGTTTAAAATGCTACCTGGCTGG
J MD10G1192300 F: CACCCGACAGCCGCAGAAG 232
R: GTCATGCCGAATACTCCAATACCAG
K MD10G1192400 F: CAGAGGAACCTTCTAATGGTCCGATA 247
R: TTCGCCTTCACTAAGTCAAAGCTGTAA
L MD10G1192900 F: GAAACGCGCAGATGGATTGAG 201
R: AAGCAAACACCAAGCCGTCCT
M MD10G1193400 F: CGCAGCAGTAGCTCTCTCTC 213
R: GGAGTTCTCCTCTGAGCTGC
N MD10G1194200 F: CTCGAGCAGCCCACCATGATG 222
R: GAGGTGGAAGCAGAAGCAGTCG
MdActin F: GGATTTGCTGGTGATGATGCT 178
R: AGTTGCTCACTATGCCGTGC

Table 2

Preliminary screening of genes in apple Co region"

基因编号
Gene ID
预测功能
Putative function
基因表达量Gene expression
普通型Normal 柱状Columnar
MD10G1183600 肽酶S24/S26A/S26B/S26C家族蛋白 Peptidase family protein 1040.4 1080.7
MD10G1183700 染色体(SMC)家族蛋白的结构维持 (SMC) family protein 777.0 1174.6
MD10G1183800 非编码RNA ncRNA - -
MD10G1183900 非编码RNA ncRNA - -
MD10G1184000 前mRNA剪接Prp 18-相互作用因子 Pre-mRNA splicing Prp18-interacting factor 949.5 1446.9
MD10G1184100 MYB结构域蛋白15 MYB domain protein 15 11.4 230.1
MD10G1184200 非编码RNA ncRNA - -
MD10G1184300 未知功能蛋白 Protein of unknown function 331.7 335.6
MD10G1184400 未知功能蛋白 Protein of unknown function 270.1 240.6
MD10G1184500 肌动蛋白解聚因子6 Actin depolymerizing factor 6 1209.1 1275.9
MD10G1184600 磷酸盐转运蛋白1 Phosphate transporter 1 - -
MD10G1184700 磷酸盐转运蛋白1 Phosphate transporter 1 472.8 519.2
MD10G1184800 乙烯响应因子1 Ethylene response factor 1 2.8 0.0
MD10G1184900 非编码RNA ncRNA - -
MD10G1185000 整合酶型DNA结合超家族蛋白 Integrase-type DNA-binding superfamily protein 2.8 0.0
MD10G1185100 整合酶型DNA结合超家族蛋白 Integrase-type DNA-binding superfamily protein - -
MD10G1185200 未知功能蛋白 Protein of unknown function 518.3 640.6
MD10G1185300 环/U盒超家族蛋白 RING/U-box superfamily protein - -
MD10G1185400 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
0.0 26.4
MD10G1185500 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1185600 环/U盒超家族蛋白RING/U-box superfamily protein 0.9 3.2
MD10G1185700 四三肽重复序列(TPR)样超家族蛋白
Tetratricopeptide repeat (TPR)-like superfamily protein
- -
MD10G1185800 四三肽重复序列(TPR)样超家族蛋白
Tetratricopeptide repeat (TPR)-like superfamily protein
- -
MD10G1185900 自噬9 Autophagy 9 (APG9) 420.7 515.0
MD10G1186000 结节蛋白MTN21/EAMA样转运蛋白家族
Nodulin MTN21/EAMA-like transporter family protein
84.3 108.7
MD10G1186100 无顶端分生组织结构域转录调节超家族蛋白
NAC (No Apical Meristem) domain transcriptional regulator superfamily protein
- -
MD10G1186200 非编码RNA ncRNA - -
MD10G1186300 开放阅读框7上游保守肽 Conserved peptide upstream open reading frame 7 966.5 1175.6
MD10G1186400 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
41.7 11.6
MD10G1186500 糖基水解酶9B6 Glycosyl hydrolase 9B6 - -
MD10G1186600 糖基水解酶9B1 Glycosyl hydrolase 9B1 - -
MD10G1186700 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1186800 碱性螺旋-环-螺旋(bHLH)DNA结合超家族蛋白
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein
- -
MD10G1186900 碱性螺旋-环-螺旋(bHLH)DNA结合超家族蛋白
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein
- -
MD10G1187000 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
0.9 11.6
MD10G1187100 非编码RNA ncRNA - -
MD10G1187200 α/β水解酶超家族蛋白Alpha/beta-Hydrolases superfamily protein 2.8 0.0
MD10G1187300 侧生器官边界结构域29 Lateral organ boundaries-domain 29 - -
MD10G1187400 锌指Zinc finger - -
MD10G1187500 光系统I亚单位H2 Photosystem I subunit H2 - -
MD10G1187600 侧生器官边界结构域29 Lateral organ boundaries-domain 29 - -
MD10G1187700 侧生器官边界结构域16 Lateral organ boundaries-domain 16 1.9 0.0
MD10G1187800 多聚ADP核糖聚合酶2 Poly(ADP-ribose) polymerase 2 869.9 577.3
MD10G1187900 ARM重复超家族蛋白 ARM repeat superfamily protein 560.0 506.6
MD10G1188000 BET1P/SFT1P样蛋白14A BET1P/SFT1P-like protein 14A 915.4 391.5
MD10G1188100 C2H2和C2HC锌指超家族蛋白C2H2 and C2HC zinc fingers superfamily protein 5.7 12.7
MD10G1188200 C2H2和C2HC锌指超家族蛋白C2H2 and C2HC zinc fingers superfamily protein - -
MD10G1188300 核糖体S17家族蛋白 Ribosomal S17 family protein 0.0 2.1
MD10G1188400 具有Dil结构域的肌球蛋白家族蛋白 Myosin family protein with Dil domain 110.9 186.8
MD10G1188500 半乳糖氧化酶/kelch重复超家族蛋白
Galactose oxidase/kelch repeat superfamily protein
- -
MD10G1188600 未知Unknown - -
MD10G1188700 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1188800 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1188900 未知Unknown 34.1 51.7
MD10G1189000 未知Unknown 292.8 93.9
MD10G1189100 未知Unknown 154.5 228.0
MD10G1189200 光合电子转移C Photosynthetic electron transfer C - -
MD10G1189300 未知Unknown 145.0 162.5
MD10G1189400 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1189500 未知Unknown 37.9 19.0
MD10G1189600 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1189700 半乳糖氧化酶/kelch重复超家族蛋白
Galactose oxidase/kelch repeat superfamily protein
- -
MD10G1189800 未知Unknown - -
MD10G1189900 2-氧戊二酸(2OG)和铁(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
- -
MD10G1190000 碱性螺旋-环-螺旋(bHLH)DNA结合超家族蛋白
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein
668.0 853.8
MD10G1190100 未知Unknown 245.4 51.7
MD10G1190200 细胞色素P450 Cytochrome P450 531.6 331.4
MD10G1190300 未知Unknown - -
MD10G1190400 细胞色素P450 Cytochrome P450 661.4 798.9
MD10G1190500 未知功能蛋白 Protein of unknown function 69.2 180.5
MD10G1190600 非编码RNA ncRNA 6.6 5.3
MD10G1190700 IND1(NADH脱氢酶所需的铁硫蛋白)-类
IND1(iron-sulfur protein required for NADH dehydrogenase)-like
225.5 520.3
MD10G1190800 类pfkb碳水化合物激酶家族蛋白 Pfkb-like carbohydrate kinase family protein 193.3 224.8
MD10G1190900 Mudr家族转座酶 Mudr family transposase 389.5 707.1
MD10G1191000 非编码RNA ncRNA 1.9 3.2
MD10G1191100 含核苷三磷酸水解酶超家族蛋白的P环
P-loop containing nucleoside triphosphate hydrolases superfamily protein
2.8 9.5
MD10G1191200 翼螺旋DNA结合转录因子家族蛋白
Winged-helix DNA-binding transcription factor family protein
10231.9 5165.8
MD10G1191300 乙烯响应元件结合因子3 Ethylene responsive element binding factor 3 1089.7 547.7
MD10G1191400 WRKY DNA结合蛋白21 WRKY DNA-binding protein 21 839.5 546.7
MD10G1191500 信号识别粒子 Signal recognition particle 508.8 376.8
MD10G1191600 跨膜氨基酸转运体家族蛋白 Transmembrane amino acid transporter family protein
MD10G1191700 PRA1家族蛋白 PRA1 (Prenylated rab acceptor) family protein 321.2 246.9
MD10G1191800 DREB2A相互作用蛋白2 DREB2A-interacting protein 2 338.3 338.8
MD10G1191900 镁转运蛋白9 Magnesium transporter 9 364.8 421.1
MD10G1192000 半乳糖醛糖基转移酶6 Galacturonosyltransferase 6 188.6 193.1
MD10G1192100 光系统II反应中心W Photosystem II reaction center W 6877.5 1885.9
MD10G1192200 非编RNA ncRNA 7.6 2.1
MD10G1192300 谷胱甘肽还原酶 Glutathione reductase 665.2 1506.0
MD10G1192400 Transferin/WD 40重复超家族蛋白 Transducin/WD40 repeat-like superfamily protein 11.4 58.0
MD10G1192500 α/β水解酶超家族蛋白 Alpha/beta-Hydrolases superfamily protein 303.2 237.4
MD10G1192600 非编码RNA ncRNA
MD10G1192700 非编码RNA ncRNA - -
MD10G1192800 类RNI超家族蛋白 RNI-like superfamily protein 1226.2 1437.4
MD10G1192900 吲哚-3-乙酸7 Indole-3-acetic acid 7 3281.4 8731.8
MD10G1193000 AUX/IAA转录调节家族蛋白 AUX/IAA transcriptional regulator family protein - -
MD10G1193100 原体prib/单链DNA结合 Primosome prib/single-strand DNA-binding 302.3 378.9
MD10G1193200 碱性螺旋-环-螺旋(bHLH)DNA结合超家族蛋白 Basic helix-loop-helix (bHLH) DNA-binding superfamily protein 525.0 624.8
MD10G1193300 色氨酸合酶α链 Tryptophan synthase alpha chain 329.8 215.3
MD10G1193400 碱性亮氨酸拉链25 Basic leucine zipper 25 145.9 575.2
MD10G1193500 GNAT家族1组蛋白乙酰转移酶 Histone acetyltransferase of the GNAT family 1 547.7 491.8
MD10G1193600 非编码RNA ncRNA - -
MD10G1193700 泛素结合酶11 Ubiquitin-conjugating enzyme 11 - -
MD10G1193800 SOUL血红素结合家族蛋白 SOUL heme-binding family protein 1072.7 1758.2
MD10G1193900 泛素特异性蛋白酶15 Ubiquitin-specific protease 15 810.2 1333.9
MD10G1194000 阳离子氨基酸转运蛋白8 Cationic amino acid transporter 8 532.5 255.4
MD10G1194100 拟南芥赤霉素2-氧化酶1 Arabidopsis thaliana gibberellin 2-oxidase 1 1936.8 795.7

Fig. 1

Tissue expression of preliminary screening gene"

Fig. 2

Expression of putative genes in stem tips of columnar and standard apple Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 3

Expression of putative gene in lateral shoot tips of lateral buds of columnar and standard apple"

Fig. 4

Expression of candidate genes in different tissues of columnar and standard apple"

[1] 梁美霞, 乔绪强, 郭笑彤, 张洪霞 . 柱型苹果生长特性及Co基因定位研究进展. 中国农业科学, 2017,50(22):4421-4430.
doi: 10.3864/j.issn.0578-1752.2017.22.018
LIANG M X, QIAO X Q, GUO X T, ZHANG H X . Research progresses in mechanisms of growth habits and Co gene mapping of columnar apple (Malus domestica × Borkh.). Scientia Agricultura Sinica, 2017,50(22):4421-4430. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.22.018
[2] LAPINS K O . Inheritance of compact growth type in apple. Journal of the American Society for Horticultural Science, 1976,101:133-135.
[3] TOBUTT K R . Breeding columnar apple varieties at East Malling. Scientific Horticulture, 1984, 35:72-77.
[4] 祝军, 李光晨, 王涛, 张文, 赵玉军 . 威赛克柱型苹果与旭的AFLP多态性研究. 园艺学报, 2000,27(6):447-448.
ZHU J, LI G C, WANG T, ZHANG W, ZHAO Y J . AFLP polymorphism between McIntosh and Wijcik columnar apple. Acta Horticulturae Sinica, 2000,27(6):447-448. (in Chinese)
[5] LAPINS K O . Segregation of compact growth types in certain apple seedling progenies. Canadian Journal of Plant Science, 1969,49:765-768.
doi: 10.4141/cjps69-130
[6] CONNER P J, BROWN S K, WEEDEN N F . Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars.[J] ournal of the American Society for Horticultural Science, 1997,122(3):350-359.
[7] CONNER P J, BROWN S K, WEEDEN N F . Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theoretical and Applied Genetics, 1998,96(8):1027-1035.
doi: 10.1007/s001220050835
[8] 王彩虹, 王倩, 戴洪义, 贾建航, 束怀瑞, 王斌 . 与苹果柱型基因(Co)紧密连锁的分子标记的筛选. 农业生物技术学报, 2001,9(2):187-190.
WANG C H, WANG Q, DAI H Y, JIA J H, SHU H R, WANG B . Screening of molecular markers closely linked to apple columnar ( Co) gene. Journal of Agricultural Biotechnology, 2001,9(2):187-190. (in Chinese)
[9] TIAN Y K, WANG C H, ZHANG J S, JAMES C, DAI H Y . Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica, 2005,145(1/2):181-188.
doi: 10.1007/s10681-005-1163-9
[10] MORIYA S, IWANAMI H, KOTODA N, TAKAHASHI S, YAMAMOTO T, ABE K . Development of a marker-assisted selection system for columnar growth habit in apple breeding. Journal of the Japanese Society for Horticultural Science, 2009,78(3):279-287.
doi: 10.2503/jjshs1.78.279
[11] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, DAL R I A, GOREMYKIN V , et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010,42(10):833-839.
doi: 10.1038/ng.654 pmid: 20802477
[12] BAI T H, ZHU Y D, FERNA´NDEZ-FERNA´NDEZ F, KEULEMANS J, BROWN S, XU K N . Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Molecular Genetics and Genomics, 2012,287(5):437-450.
doi: 10.1007/s00438-012-0689-5
[13] BALDI P, WOLTERS P J, KOMJANC M, VIOLA R, VELASCO R, SALVI S . Genetic and physical characterization of the locus controlling columnar habit in apple ( Malus × domestica Borkh.). Molecular Breeding, 2013,31(2):429-440.
doi: 10.1007/s11032-012-9800-1
[14] OTTO D, PETERSEN R, BRAUKSIEPE B, BRAUN P, SCHMIDT E R . The columnar mutation (Co gene) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Molecular Breeding, 2014,33(4):863-880.
doi: 10.1007/s11032-013-0001-3
[15] MORIYA S, OKADA K, HAJI T, YAMAMOTO T, ABE K . Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus×domestica Borkh.) linkage group 10. Plant Breeding, 2012,131(5):641-647.
doi: 10.1111/pbr.2012.131.issue-5
[16] MORIMOTO T, BANNO K . Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genetics & Genomes, 2015,11(1):807.
doi: 10.1387/ijdb.190239gs pmid: 31840777
[17] WADA M, IWANAMI H, MORIYA S, HANADA T, MORIYA- TANAKA Y, HONDA C, SHIMIZU T, ABE K, OKADA K . A root-localized gene in normal apples is ectopically expressed in aerial parts of columnar apples. Plant Growth Regulation, 2018,85(3):389-398.
doi: 10.1007/s10725-018-0400-x
[18] PETERSEN R, DJOZGIC H, RIEGER B, RAPP S, SCHMIDT E R . Columnar apple primary roots share some features of the columnar- specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC Plant Biology, 2015,15(1):34.
doi: 10.1186/s12870-014-0356-6 pmid: 25648715
[19] OKADA K, WADA M, MORIYA S, KATAYOSE Y, FUJISAWA H, WU J Z, KANAMORI H, KURITA K, SASAKI H, FUJII H, TERAKAMI S, IWANAMI H, YAMAMOTO T, ABE K . Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples ( Malus× domestica). Journal of Plant Research, 2016,129(6):1109-1126.
doi: 10.1007/s10265-016-0863-7 pmid: 27650512
[20] GASIC K, HERNANDEZ A, KORBAN S S . RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 2004,22(4):437-438.
doi: 10.1007/BF02772687
[21] 樊连梅, 王超, 刘更森, 原永兵 . 苹果着色期实时定量PCR内参基因的筛选和验证. 植物生理学报, 2014,50(12):1903-1911.
FAN L M, WANG C, LIU G S, YUAN Y B . Screening and validation of real-time quantitative PCR internal reference genes in apple coloring period. Journal of Plant Physiology, 2014,50(12):1903-1911. (in Chinese)
[22] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using Real time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[23] 李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 周佳, 张军科, 魏钦平 . SH6 矮化中间砧‘富士’苹果不同树形对树体生长和果实产量、品质的影响. 中国农业科学, 2017,50(19):3789-3796.
doi: 10.3864/j.issn.0578-1752.2017.19.015
LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHOU J, ZHANG J K, WEI Q P . Effect of three different tree shapes on growth, yield and fruit quality of ‘Fuji’ apple trees on dwarfing interstocks. Scientia Agricultura Sinica, 2017,50(19):3789-3796. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.19.015
[24] ROBINSON T L . Recent advances and future directions in orchard planting systems. Acta Horticulturae, 2004,732:367-381.
[25] 马宝焜, 徐继忠, 孙建设 . 关于我国苹果矮砧密植栽培的思考. 果树学报, 2010,27(1):105-109.
MA B K, XU J Z, SUN J S . Consideration for high density planting with dwarf rootstocks in apple in China. Journal of Fruit Science, 2010,27(1):105-109. (in Chinese)
[26] KIM M Y, SONG K J, HWANG J H, SHIN Y U, LEE H J . Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). Journal of the American Society for Horticultural Science, 2003,78(4):559-562.
[27] IKASE L, DUMBRAVS R . Breeding of columnar apple-trees in Latvia. Biologija, 2004,2:8-10.
[28] HEMMAT M, WEEDEN N F, CONNER P J, BROWN S K . A DNA marker for columnar growth habit in apple contains a simple sequence repeat. Journal of the American Society for Horticultural Science, 1997,122(122):347-349.
doi: 10.21273/JASHS.122.3.347
[29] KELSEY D F, BROWN S K . ‘McIntosh Wijcik’: A columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. Journal of American Pomological Society, 1992,46(2):83-87.
[30] KROST C, PETERSEN R, SCHMIDT E R . The transcriptomes of columnar and standard type apple trees (Malus × domestica Borkh.) -A comparative study. Gene, 2012,498(2):223.
doi: 10.1016/j.gene.2012.01.078
[31] WOLTERS P J, SCHOUTEN H J, VELASCO R, SI-AMMOUR A, BALDI P . Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytologist, 2013,200(4):993-999.
doi: 10.1111/nph.12580
[32] CHEN Y H, ZHANG X B, WU W, CHEN Z L, GU H Y, QU L J . Overexpression of the wounding-responsive gene AtMYB15 activates the shikimate pathway in Arabidopsis. Journal of Integrative Plant Biology, 2006,48(9):1084-1095.
doi: 10.1111/j.1744-7909.2006.00311.x
[33] CITOVSKY V, LIU B . Myosin-driven transport network in plants is functionally robust and distinctive. Proceedings of the National Academy of Sciences of the USA, 2017,114(8):1756-1758.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[4] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[5] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[6] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[7] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[11] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[12] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[13] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[14] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[15] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!