Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2828-2839.doi: 10.3864/j.issn.0578-1752.2020.14.007

• SPECIAL FOCUS: SORGHUM BREEDING AND CULTIVATION • Previous Articles     Next Articles

Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A

DUAN YouHou(),LU Feng()   

  1. Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
  • Received:2019-07-31 Accepted:2019-10-24 Online:2020-07-16 Published:2020-08-10
  • Contact: Feng LU E-mail:duanyouhou@163.com;lufeng740202023@163.com

Abstract:

【Objective】In order to identify the genetic effect of early-maturing and dwarf traits on sorghum male-sterile line P03A, here we, provide a theoretical basis for sorghum early-maturing and dwarf breeding improvement by genetic analysis on growth period and plant height. 【Method】In 2016, sorghum male-sterile line P03A,L025A, L080A, L081 and P02A were used as female parent lines, and restoring line L242, L2381, LNK1, L280, L237, and L298 were used as male parent lines the F1 hybrid seeds were obtained by NCⅡ crossing method. And in the winter of 2016, F2 seeds were harvested from F1 selfing plantlets in Hainan province. During 2017-2018, Combining ability analysis on growth period and plant height traits were performed, together with 4 generation conjoint analysis from hybrid F1 and F2 population using mixed major gene plus poly-gene inheritance model. P03A and L237 were selected as female and male parent respectively. 【Result】 Hybrid combination P03A/L237 show the characters of short growth period and short plant height through interaction of the 2 parent lines. P03A contribute to shortening the growth period and plant height in hybrid. Compared with the rest 4 sterile lines, the hybrid combinations with P03A show shorter growth period and plant height, and heritability on the 2 traits was identified. 4-generation analysis of P03A/L237 on growth period and plant height were performed using major gene plus poly-gene inheritance model, which indicate that growth period and plant height traits were both controlled by two major genes with additive-dominate-epistatic effects and poly-genes. Analysis result of growth period suggest that additive effect is higher than epistatic and dominate effects. Heritability of major genes is 81.13%, and heritability of poly-genes is 10.36% respectively. 91.49% phenotypic variation is conducted by major genes plus poly-genes, and 8.51% phenotypic variation is conducted by environmental factors. Analysis of plant height indicate that additive effects and dominant effects of the first major gene are all stronger than the second major gene, and the dominant effect is much more important. Heritability of major genes and poly-genes is 84.80%, and 6.89% respectively. 8.31% phenotypic variation is conducted by environmental factors. 【Conclusion】Genetic effects of growth period and plant height of sorghum sterile line P03A were analyzed in this study. It was identified that the heritability of the two traits mentioned above are relatively high, not easily affected by environmental factors, and with stable hereditary characters. Thus, P03A can be utilized due to its early maturing and dwarf genes in sorghum hybrid breeding, which can meet the requirement of sorghum mechanized production.

Key words: early maturity, dwarf, sorghum, genetic analysis

Table 1

Variance analysis of variance and combining ability of various character"

变异来源
Source of variation
自由度
Degree of freedom
株高
PH
生育期
GP
区组Block 2 0.98 0.66
组合Combination 29 29.55** 49.34**
母本Female 4 17.42* 4.99*
父本Male 5 42.16** 7.01**
母本×父本
Female×male
20 5.99** 6.72**
误差Error 58 7.30 0.39

Table 2

Effect values of general combination capacity of parents"

亲本Parent 株高PH 生育期GP
P03A -5.82 -2.61
L025A 1.09 0.33
L080A -0.07 -0.75
L081A 2.39 -0.71
P02A -2.29 -1.70
L242 5.92 3.40
L2381 -1.09 0.33
LNK1 -3.03 -0.75
L280 0.47 0.71
L237 6.14 5.70
L298 2.66 2.42

Table 3

Extremum of special combining ability and its combination name"

性状Traits 极大值Maximum value 组合Combination 极小值Minimum value 组合Combination
株高PH 7.87 L025A/2381 0.06 P03A/L237
生育期GP 5.49 L081A/NK1 -1.12 P03A/L237

Table 4

Over high-parent value on growth period and plant height traits of F1with different sterile line and restorer line (%)"

不育系Sterile 恢复系Restorer 生育期GP 株高PH
P03A L242 -5.31 21.19
L2381 -7.02 11.51
LNK1 -6.09 20.16
L280 -8.62 14.08
L237 -10.17 1.88
L298 -10.00 5.52
L025A L242 1.26 35.65
L2381 -2.23 33.45
LNK1 -3.54 24.36
L280 -1.32 29.53
L237 -2.20 15.33
L298 -4.56 20.95
L080A L242 0.84 29.81
L2381 -1.22 39.21
LNK1 -2.46 29.43
L280 -1.56 19.66
L237 -3.69 18.75
L298 -3.25 24.65
L081A L242 -3.15 28.05
L2381 -2.02 15.64
LNK1 2.09 20.66
L280 -2.62 24.08
L237 -3.17 31.80
L298 -2.00 25.99
P02A L242 -0.78 26.78
L2381 -1.22 30.25
LNK1 -1.54 14.36
L280 -0.32 19.57
L237 -2.20 25.33
L298 -3.56 10.82

Table 5

Growth period and plant height of P03A, different restorer lines and hybrids F1"

F1组合
Combination of F1
生育期GP (d) 株高PH (cm)
不育系
MSL
恢复系
RS
F1 中亲值
MP
超中亲
OMP (%)
不育系
MSL
恢复系
RS
F1 中亲值
MP
超中亲OMP (%)
P03A/L242 102 113 107 107.5 -0.47 95 118 143 106.5 34.27
P03A/L2381 102 114 106 108.0 -1.85 95 139 155 117.0 32.48
P03A/LNK1 102 115 108 108.5 -0.46 95 124 149 109.5 36.07
P03A/L280 102 116 106 109.0 -2.75 95 142 162 118.5 36.71
P03A/L237 102 118 106 110.0 -3.64 95 160 163 127.5 27.84
P03A/L298 102 120 108 111.0 -2.70 95 163 172 129.0 33.33

Table 6

Statistic analysis and normal distribution test for growth period and plant high traits in F2"

性状Traits 标准差Standard deviation 偏度Kurtosis 峰度Skewness 正态性检验Normality test 概率P
生育期GP 4.08 0.32 -0.81 0.84 0.001
株高PH 21.75 0.21 -0.65 0.97 0.046

Fig. 1

Frequency distribution map of plant number of the P03A/L237 in growth period"

Fig. 2

Frequency distribution map of plant number of the P03A/L237 in plant height"

Table 7

Population growth period and plant high frequency distribution"

4个世代群体
Four generations
P1 P2 F1 F2 4个世代群体
Four generations
P1 P2 F1 F2
生育期性状的频次分布FDGT (d) 100 株高性状的频次分布FGHT(cm) 85—90 1 1
101 2 5 91—95 8 5
102 7 9 96—100 1 10
103 1 19 101—105 15
104 26 106—110 18
105 1 33 111—115 22
106 4 42 116—120 25
107 5 35 121—125 29
108 36 126—130 35
109 29 131—135 40
110 30 136—140 33
111 20 141—145 30
112 18 146—150 24
113 15 151—155 18
114 20 156—160 2 3 20
115 26 161—165 6 5 18
116 11 166—170 2 2 15
117 2 8 171—175 12
118 6 3 176—180 9
119 2 181—185 5
120 186—190 1
总株数Total number of plants 10 10 10 385 总株数Total number of plants 10 10 10 385
均值Average (d) 102 118 106 106 均值Average (cm) 95 160 163 142

Table 8

AIC values of maximum likelihood f in different genetic models on joint analysis of function in four generations of P03A/ L237"

模型
Model
生育期性状GP 株高性状PH
极大似然函数值MFV AIC 极大似然函数值MFV AIC
A-1 1MG-AD -1099.25 2210.50 -1790.95 3593.89
A-2 1MG-A -1114.60 2239.20 -1791.54 3593.08
A-3 1MG-EAD -1107.17 2224.34 -1802.79 3615.59
A-4 1MG-AEND -1137.21 2284.42 -1801.53 3613.05
B-1 2MG-ADI -1081.63 2185.27 -1774.02 3570.04
B-2 2MG-AD -1080.28 2174.57 -1781.03 3576.05
B-3 2MG-A -1098.30 2206.59 -1790.01 3590.03
B-4 2MG-EA -1104.67 2217.35 -1793.00 3594.01
B-5 2MG-AED -1109.25 2228.51 -1823.65 3657.29
B-6 2MG-EEAD -1110.47 2228.94 -1804.00 3616.00
C-0 PG-ADI -1097.70 2207.39 -1751.40 3514.79
C-1 PG-AD -1104.20 2218.39 -1787.05 3584.10
D-0 MX1-AD-ADI -1073.09 2163.98 -1739.87 3495.73
D-1 MX1-AD-AD -1148.73 2311.46 -2093.86 4201.72
D-2 MX1-A-AD -1097.06 2206.12 -1754.13 3520.26
D-3 MX1-EAD-AD -1104.19 2220.38 -1795.61 3603.23
D-4 MX1-AEND-AD -1104.19 2220.38 -1795.61 3603.23
E-0 MX2-ADI-ADI -1069.35 2162.69 -1735.48 3494.97
E-1 MX2-ADI-AD -1069.36 2156.72 -1734.89 3487.78
E-2 MX2-AD-AD -1073.99 2157.98 -1743.75 3497.50
E-3 MX2-A-AD -1081.68 2169.35 -1742.01 3490.02
E-4 MX2-EAED-AD -1089.15 2182.30 -1746.91 3497.81
E-5 MX2-AED-AD -1078.74 2163.47 -1759.96 3525.92
E-6 MX2-EEAD-AD -1088.83 2181.65 -1754.88 3513.75

Table 9

Suitability test of genetic model for growth period and plant height traits"

性状Traits 模型
Model
世代
Generation
U21 U22 U23 nW2 Dn
生育期
GP
MX2-ADI-ADI P1 0.0003(0.9872) 0.1456(0.7028) 2.5227(0.0322)* 0.0846(0.6775) 0.2568(0.8234)
F1 0.0014(0.6200) 0.0407(0.8402) 0.9067(0.3410) 0.0576(0.8305) 0.1739(0.9905)
P2 0.0185(0.8918) 0.3031(0.5820) 2.8068(0.0339)* 0.1164(0.5172) 0.1480(0.9985)
F2 0.0001(0.9925) 0.0000(0.9914) 0.0000(0.9949) 0.1832(0.3036) 0.0028(1.0000)
MX2-ADI-AD P1 0.0006(0.9804) 0.1392(0.7091) 2.521(0.1123) 0.0846(0.6773) 0.2558(0.8268)
F1 0.0028(0.9575) 0.0346(0.8525) 0.9028(0.3420) 0.0579(0.8292) 0.1723(0.9913)
P2 0.0198(0.8882) 0.3077(0.5791) 2.8028(0.0941) 0.1163(0.5176) 0.1491(0.9984)
F2 0.0002(0.9901) 0.0002(0.9892) 0.0003(0.9953) 0.1832(0.3035) 0.0028(1.0000)
MX2-AD-AD P1 1.1440(0.2848) 1.8932(0.1688) 1.8532(0.1734) 0.2231(0.2305) 0.4346(0.2242)
F1 3.6457(0.0362) 3.3947(0.0454)* 0.0006(0.9799) 0.4232(0.0650) 0.4916(0.1227)
P2 0.2916(0.5892) 0.0518(0.8199) 1.3947(0.2376) 0.1235(0.4867) 0.1617(0.9957)
F2 0.0560(0.8129) 0.0850(0.7707) 0.0622(0.8031) 0.1987(0.2718) 0.0046(1.0000)
株高
PH
MX2-ADI-ADI P1 0.0039(0.9504) 0.0001(0.9946) 0.0720(0.7884) 0.0572(0.8329) 0.1901(0.9777)
F1 0.0139(0.9061) 6.1245(0.0242)* 3.4916(0.0417)* 0.1253(0.4794) 0.1403(0.9994)
P2 0.0039(0.9504) 0.0001(0.9946) 0.0720(0.7884) 0.0572(0.8329) 0.1901(0.9777)
F2 0.0003(0.9863) 0.0001(0.9937) 0.0012(0.972) 0.1012(0.5899) 0.0029(1.0000)
MX2-ADI-AD P1 0.0018(0.9660) 0.0007(0.9787) 0.0739(0.7857) 0.0570(0.8342) 0.1925(0.9752)
F1 0.0205(0.8860) 0.1100(0.7402) 0.5402(0.8399) 0.1269(0.4728) 0.1383(0.9995)
P2 0.0018(0.9660) 0.0007(0.9787) 0.0739(0.7857) 0.0570(0.8342) 0.1925(0.9752)
F2 0.0002(0.9901) 0.0002(0.9894) 0.0000(0.9957) 0.0980(0.6060) 0.0029(1.0000)
MX2-A-AD P1 1.0327(0.3095) 0.7879(0.3747) 0.1484(0.7001) 0.1566(0.3714) 0.1306(0.9998)
F1 3.0112(0.0361)* 2.3971(0.0316)* 0.4907(0.4836) 0.2178(0.2387) 0.1814(0.9855)
P2 1.0327(0.3095) 0.7879(0.3747) 0.1484(0.7001) 0.1566(0.3714) 0.1306(0.9998)
F2 0.3888(0.5329) 0.4205(0.5167) 0.0320(0.8581) 0.1520(0.3852) 0.0099(1.0000)

Table 1

0 Estimation of genetic parameters of E-1 model for growth period and plant height traits"

一阶遗传参数 生育期GP 株高PH 二阶遗传参数 生育期GP 株高PH
da 4.5649 13.8071 σ2mg 14.6803 439.7595
db -0.0286 -1.2563 σ2pg 1.7241 32.6096
ha -0.7681 -14.6771 h2mg(%) 0.8113 0.8480
hb 0.6971 -13.1362 h2pg(%) 0.1036 0.0689
i -1.4036 17.9810 σ2p 426.6282 1039.4318
jab 0.7422 16.3419 σ2e 36.3151 86.4122
jba 2.3529 13.0074 σ2e/σ2p(%) 8.5100 8.3100
l -0.7863 11.2103
[d] -12.1463 -46.5507
[h] -4.0979 68.7717
[1] 张晓娟, 张一中, 周福平. 高粱新选不育系主要农艺经济性状的配合力分析. 中国农学通报, 2012,28(18):71-75.
ZHANG X J, ZHANG Y Z, ZHOU F P. Analysis on the combining ability of main agronomic and economic traits for new sorghum male sterility lines. Chinese Agricultural Science Bulletin, 2012,28(18):71-75. (in Chinese)
[2] 尹学伟, 王培华, 张晓春. 14个糯高粱亲本主要农艺性状配合力及遗传力分析. 西南农业学报, 2014,27(4):1363-1367.
YIN X W, WANG P H, ZHANG X C. Analysis of 14 parents glutinous sorghum’s main agronomic characteristics combining ability and heritability. Southwest China Journal of Agricultural Sciences, 2014,27(4):1363-1367. (in Chinese)
[3] 吕鑫, 平俊爱, 张福耀, 杜志宏, 李慧明, 杨婷婷, 牛皓, 姚琳. 新选饲草高粱恢复系农艺性状配合力效应分析. 草业科学, 2016,33(7):1361-1366.
LÜ X, PING J A, ZHANG F Y, DU Z H, LI H M, YANG T T, NIU H, YAO L. Effect analysis on the combining ability of main agronomic traits for new breeding restorer lines derived from forage sorghum. Pratacultural Science, 2016,33(7):1361-1366. (in Chinese)
[4] 李金梅, 赵威军, 张福耀. 甜高粱抗倒伏性相关性状的配合力和遗传参数分析. 作物杂志, 2014(2):56-60.
LI J M, ZHAO W J, ZHANG F Y. Analysis on combining ability and genetic parameters of traits related to lodging resistance in sweet sorghum. Crops, 2014(2):56-60. (in Chinese)
[5] 高海燕, 程庆军, 田承华. 新选高粱亲本系的配合力及遗传力分析. 农学学报, 2016,6(5):6-10.
GAO H Y, CHENG Q J, TIAN C H. Combining ability and heritability of new sorghum parental lines. Journal of Agriculture, 2016,6(5):6-10. (in Chinese)
[6] NI X L, ZHAO G L, LIU T P. Analysis on the combining ability and heritability of main agronomic traits of hybrid glutinous sorghum. Agricultural Science & Technology, 2012,13(10):2104-2109.
[7] GELETA N, MOHAMMED H, ZELLEKE H. Genetic variability, heritability and genetic advance in sorghum [Sorghum bicolor(L.) Moench] germplasm. Crop Research, 2005,30(3):439-445.
[8] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Plant Quantitative Traits. Beijing: Science Press, 2003. (in Chinese)
[9] ZHANG Y M, GAI J Y, YANG Y. The ElM algorithm in the joint segregation analysis of quantitative traits. Genetical Research, 2003,81(2):157-163.
pmid: 12872917
[10] WANG J, FODLIEH D W, COOPER M, DELACY I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001,103:804-816.
doi: 10.1007/s001220100628
[11] 温明星, 李东升, 胡芳芳. 宁麦9号×镇麦168小麦F2群体产量相关性状的遗传模型分析. 麦类作物学报, 2018,38(4):386-394.
WEN M X, LI D S, HU F F. Genetic model analysis on yield-related traits in wheat F2 population of Ningmai 9×Zhenmai 168. Journal of Triticeae Crops, 2018,38(4):386-394. (in Chinese)
[12] 赵树琪, 庞朝友, 魏恒玲, 王寒涛, 李黎贝, 宿俊吉, 范术丽, 喻树迅. 陆地棉早熟性状多世代联合遗传分析. 棉花学报, 2017,29(2):119-127.
doi: 10.11963/issn.1002-7807.201702001
ZHAO S Q, PANG C Y, WEI H L, WANG H T, LI L B, SU J J, FAN S L, YU S X. Genetic inheritance of earliness traits in upland cotton (Gossypium hirsutum L.) inferredby joint analysis of multiple generations. Cotton Science, 2017,29(2):119-127. (in Chinese)
doi: 10.11963/issn.1002-7807.201702001
[13] 刘金波, 徐波, 李建红, 李健, 刘艳, 周振玲, 杨波, 迟铭, 宋兆强, 卢百关, 方兆伟. 水稻株高和每穗颖花数的6个世代联合遗传分析. 华北农学报, 2017,32(S1):88-94.
LIU J B, XU B, LI J H, LI J, LIU Y, ZHOU Z L, YANG B, CHI M, SONG Z Q, LU B G, FANG Z W. Joint genetic analysis on plant height and spikelets per panicle by using six generations of two crosses in indica rice. Acta Agriculturae Boreali-Sinica, 2017,32(S1):88-94. (in Chinese)
[14] 进茜宁, 张怀胜, 王铁固, 吴向远, 陈士林. 玉米单穗粒质量的遗传模型分析. 河南科技学院学报(自然科学版), 2018,46(5):17-21.
JIN Q N, ZHANG H S, WANG T G, WU X Y, CHEN S L. Genetic model analysis of maize single spike kernel weight. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2018,46(5):17-21. (in Chinese)
[15] 赵桂云, 王继安, 李文滨, 滕卫丽, 韩英鹏. 大豆抗食心虫主基因+多基因混合遗传模型的五世代联合分析. 大豆科学, 2014,33(3):301-304.
ZHAO G Y, WANG J A, LI W B, TENG W L, HAN Y P. Genetic analysis on resistance to soybean pod borer by using five generations joint analysis of mixed inheritance model of major gene and polygene. Soybean Science, 2014,33(3):301-304. (in Chinese)
[16] 卢峰, 邹剑秋, 段有厚. 甜高粱茎秆含糖量相关性状的遗传分析. 中国农业大学学报, 2012,17(6):111-116.
LU F, ZOU J Q, DUAN Y H. Genetic analysis of stalk sugar content related traits in sweet sorghum (Sorghum bicolor L. Moench). Journal of China Agricultural University, 2012,17(6):111-116. (in Chinese)
[17] 管延安, 张华文, 樊庆琪, 杨延兵. 普通高粱与甜高粱杂交组合株高、糖度的主基因多基因模型遗传效应分析. 核农学报, 2012,26(1):36-42.
GUAN Y A, ZHANG H W, FAN Q Q, YANG Y B. Genetic analysis of plant height and brix value by using major gene and polygene inheritance model in across between common sorghum and sweet sorghum. Journal of Nuclear Agricultural Sciences, 2012,26(1):36-42. (in Chinese)
[18] 卢华雨, 李延玲, 罗峰. 粒用高粱4个主要光合性状数量遗传分析. 江苏农业科学, 2018,46(17):68-72.
LU H Y, LI Y L, LUO F. Quantitative genetic analysis of four main photosynthetic traits in grain sorghum. Jiangsu Agricultural Science, 2018,46(17):68-72. (in Chinese)
[19] FERNANDEZ M G S, STRAND K, HAMBLIN M T, MARK W, EMILY H, STEPHEN K. Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp.) diversity panel. Genetic Resources & Crop Evolution, 2015,62(6):939-950.
[20] 李延玲, 白晓倩, 于澎湃, 高建明, 裴忠有, 罗峰, 孙守钧. 高粱株型性状数量遗传分析. 华北农学报, 2018,33(1):143-149.
LI Y L, BAI X Q, YU P P, GAO J M, PEI Z Y, LUO F, SUN S J. Quantitative genetic analysis of sorghum plant type characters. Acta Agriculturae Boreali-Sinica, 2018,33(1):143-149. (in Chinese)
[21] 卢华雨, 白晓倩, 于澎湃, 罗峰. 饲用高粱4个主要株型性状的遗传分析. 贵州农业科学, 2019,47(1):5-9, 13.
LU H Y, BAI X Q, YU P P, LUO F. Genetic analysis of four main plant type traits in forage sorghum. Guizhou Agricultural Sciences, 2019,47(1):5-9, 13. (in Chinese)
[22] 邵健丰, 翟国伟, 王华. 高粱穗型相关性状的遗传研究. 科技通报, 2019,35(2):46-48.
SHAO J F, ZHAI G W, WANG H. Study on genetic feature of sorghum panicle type traits. Bulletin of Science and Technology, 2019,35(2):46-48. (in Chinese)
[23] 周紫阳, 赵雪梅, 李光华, 石贵山, 王江红, 马英慧. 高粱叶角遗传研究. 杂粮作物, 2006(6):392-394.
ZHOU Z Y, ZHAO X M, LI G H, SHI G S, WANG J H, MA Y H. Studies on the leaf angle of sorghum. Rain Fed Crops, 2006(6):392-394. (in Chinese)
[24] 卢庆善. 高粱杂交种亲本遗传多样性及其改良. 园艺与种苗, 2012(1):1-4, 27.
LU Q S. Genetic diversity and improvement of hybrid parents in sorghum. Horticulture and Seedling, 2012(1):1-4, 27. (in Chinese)
[25] 杨伟光. 高粱生育期的遗传分析. 中国农业科学, 1989(5):19-24.
YANG W G. Genetic Analysis of Growth period of Sorghum. Scientia Agricultura Sinica, 1989(5):19-24. (in Chinese)
[26] 杨伟光. 高粱杂交二代生育期遗传特性的研究. 吉林农业科学, 1989(4):39-43.
YANG W G. Study on the hereditary character of growth period in sorghum F2 generation the second of hybrid. Jilin Agricultural Science, 1989(4):39-43. (in Chinese)
[27] 李振武. 高粱F3生育期遗传表现. 辽宁农业科学, 1984(4):1-4.
LI Z W. Reproductive genetic performance of sorghum F3. Liaoning Agricultural Sciences, 1984(4):1-4. (in Chinese)
[28] 杨伟光. 高粱主要农艺性状基因效应的研究. 中国农业科学, 1991(4):26-31.
YANG W G. Study on gene effect of major agronomic characters in sorghum. Scientia Agricultura Sinica, 1991(4):26-31. (in Chinese)
[29] 杨伟光, 顾德峰, 牟金明. 中国高粱地方品种株高的遗传研究. 吉林农业大学学报, 1993(4): 28-31,105-106.
YANG W G, GU D F, MU J M. Genetic study on plant height of local variety of chinese sorghum. Journal of Jilin Agricultural University, 1993(4):28-31,105-106. (in Chinese)
[30] 白晓倩, 于澎湃, 李延玲, 高建明, 裴忠有, 罗峰, 孙守钧. 粒用高粱F2群体农艺性状数量遗传分析. 华北农学报, 2019,34(1):107-114.
BAI X Q, YU P P, LI Y L, GAO J M, PEI Z Y, LUO F, SUN S Y. Genetic analysis of agronomic characters in F2 population of sorghum bicolor. Acta Agriculture Boreali-Sinica, 2019,34(1):107-114. (in Chinese)
[31] 高士杰, 陈冰嬬, 李继洪, 贾俊英, 侯玉波. 中国高粱春播早熟区雄性不育系存在的问题探讨. 吉林农业科学, 2012,37(5):9-11.
GAO S J, CHEN B X, LI J H, JIA J Y, HOU Y B. Discussions on problems in male sterile line of sorghum in spring seeding early-maturing region in China. Journal of Jilin Agricultural Sciences, 2012,37(5):9-11. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[4] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[5] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[6] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[7] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[8] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[9] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[10] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[11] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[12] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[13] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
[14] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
[15] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!