Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2149-2160.doi: 10.3864/j.issn.0578-1752.2020.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mixed Inheritance Analysis and QTL Mapping for γ-Tocopherol Content in Soybean

LIANG HuiZhen1,2,XU LanJie1,DONG Wei1,YU YongLiang1,YANG HongQi1,TAN ZhengWei1,LI Lei1,LIU XinMei1   

  1. 1Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    2Xixia Branch, Henan Academy of Agricultural Sciences, Xixia 474550, Henan
  • Received:2019-09-26 Accepted:2019-12-03 Online:2020-06-01 Published:2020-06-09

Abstract:

【Objective】Inheritance and main QTL for the content of γ-tocopherol were detected by genetic analysis and QTL mapping. The results lay a genetic foundation for the selection of soybean varieties with high γ-tocopherol content in soybean. 【Method】The RILs were derived from a cross between Jindou23 of commercial cultivar as the female parent and Huibuzhi of farm variety from Shanxi Province as the male parent that construct genetic linkage map. The map consisting of 232 marker loci spanned a total of 2 047.6 cM in length with an average spacing of 8.8 cM between adjacent marker loci. The parent lines and the RILs were cultivated in summer at Yuanyang experimental farm of Henan Academy of Agricultural Sciences, and in winter at Sanya of Hainan province in 2011, 2012, 2015. Random block design was adopted in field experiment, and the entire planting experiment was replicated twice. 15.00 g fully filled and uniform soybean seeds from each RILs in six environments were sampled. The content of γ-tocopherol was quantitatively and qualitatively analysis by High Performance Liquid Chromatography (HPLC). The content of γ-tocopherol in soybean was analyzed by major gene plus polygene mixed inheritance model approach. QTL for the content of γ-tocopherol in soybean were detected by composite interval mapping model using WinQTLCart 2.5. 【Result】The results showed that the content of γ-tocopherol was controlled by two pairs of main overlapping major gene × additive polygenes using major gene plus polygene mixed inheritance analysis. According to the data of Sanya, the epistasis effect value between two major genes was 0.4010-0.5169, and the additive effect value of polygene was 0.1797-0.2146. The results of Sanya experiment showed that the heritability of major gene and polygene were 11.27%-13.05% and 82.51%-86.55%, respectively. The polygene effect was greater than that of major gene effect. The data of Yuanyang experiment showed that the epistasis effect between the two major genes was 0.9646-1.8455, and the heritability of the major genes was 39.51%-58.96%. No polygenic effect was detected. QTLs resolved by using WinQTLCart 2.5 Compound Interval Mapping (CIM) analysis. Nine QTLs for the content of γ-tocopherol were mapped on chromosomes A1(Ch.5), A2(Chr.8), C1(Chr.4), K(Chr.9), M(Chr.7) and G(Chr.18), respectively. These QTL individually explained 7.29%-29.55% of the total phenotypic variation. The QTL of qγ-G-1 flanked by Satt275 and Satt038 (0.01 cM) on chromosome 8, were detected in three environmental conditions of 2011 at Yuanyang, 2012 and 2015 at Sanya, and explained 8.97%, 8.12%, 7.91% of the phenotypic variation, respectively. The QTL of qγ-A1-1 flanked by Satt276 and Satt364 (0.01 cM) on chromosomes 5, were detected in three environmental conditions of 2011 and 2015 at Yuanyang, and explained 29.54%, 28.23% of the phenotypic variation, respectively. qγ-G-1 and qγ-A1-1 can be stably expressed in different genetic backgrounds. 【Conclusion】The content of γ-tocopherol was controlled by two pairs of overlapping major Gene × additive Polygenes genetic model (MX2-Duplicate-A). Its inheritance was influenced by gene, environment, and epistasis. The two stable inheritance main-effect QTL for the content of γ-tocopherol were co-localization with marker Satt275-Satt038 and Satt276-Satt364 intervals in soybean, respectively. The co-localization marker interval has certain reference value for molecular marker assisted soybean breeding.

Key words: soybean, γ-Tocopherol, genetic, major genes plus polygene, gene mapping, epistasis

Fig. 1

Distribution of γ-T among the two parents and the RIL population across six environments"

Table 1

Phenotypic variation of γ-T contents of soybean seed in RIL population"

年份
Year
平均值Mean (μg·g-1) 亲本差 P2—P1 (μg·g-1) RIL变幅RIL range (μg·g-1) GCV (%) 遗传率
h2
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
2011 111.61 100.83 -51.12 -48.77 25.59—164.15 22.85—158.31 22.66 20.08 0.509
2012 109.92 101.18 -49.90 -51.23 33.65—152.19 27.65—161.02 20.07 16.21 0.437
2015 110.26 100.66 -41.10 -44.26 20.01—158.03 31.03—165.06 24.61 22.12 0.498
平均Mean 110.60 100.88 -48.43 -48.09 20.01—164.15 22.85—165.06 22.59 19.65 0.488

Table 2

Variance analysis of γ-T contents in soybean seeds"

性状
Trait
变异来源 Variation
基因型Genotypes 环境Environment 基因型×环境 Genotypes×Environment 误差Error
MS F MS F MS F MS
γ-T 14.1624 2.6972* 0.0358 0.0068 16.6445 3.1698** 5.2509

Table 3

Correlation of γ-T contents in soybean seeds"

环境
Environment
原阳2011
Yuanyang2011
原阳2012
Yuanyang2012
原阳2015
Yuanyang2015
三亚2011
Sanya2011
三亚2012
Sanya2012
三亚2015
Sanya2015
原阳2011 Yuanyang2011 1
原阳2012 Yuanyang2012 -0.050 1
原阳2015 Yuanyang2015 0.137 0.043 1
三亚2011 Sanya2011 0.417* 0.023 -0.006 1
三亚2012 Sanya2012 0.307 0.542** 0.303 0.238 1
三亚2015 Sanya2015 0.307 -0.243 0.047 0.356 0.361 1

Table 4

Analysis of the best models and genetic parameters for γ-T"

参数
Parameter
γ-生育酚γ-T 参数
Parameter
γ-生育酚 γ-T
原阳Yuanyang 三亚Sanya 原阳Yuanyang 三亚Sanya
最适模型Optimal model MX2-Duplicate-A MX2-Duplicate-A
一阶参数1st order parameter 二阶参数2nd order parameter
M 2011 8.6329 11.3909 σp2 2011 6.3918 2.8311
2012 10.3476 10.4479 2012 3.8596 3.2818
2015 7.0225 12.4529 2015 9.3853 3.0353
iab(i*) 2011 1.6711 0.4329 σmg2 2011 3.4311 0.3695
2012 0.9646 0.5169 2012 1.5250 0.4158
2015 1.8455 0.4010 2015 5.5337 0.3420
[d] 2011 0.1797 σpg2 2011 2.3360
2012 0.2146 2012 2.7899
2015 0.1921 2015 2.6270
h2mg (%) 2011 53.68 13.05
2012 39.51 12.67
2015 58.96 11.27
hpg2 (%) 2011 82.51
2012 84.99
2015 86.55

Table 5

QTL positions and its parameters for γ-T"

年份
Year
地点
Location
QTL 染色体
Chr.
标记区间
Marker interval
位置
Position (cM)
置信区间
Confidence interval
LOD 加性效应
Additive
R2
(%)
2011 原阳Yuanyang qγ-A1-1 A1(5) Satt276—Satt364 12.01 7.01—14.35 3.71 0.622 29.54
qγ-G-1 G(18) Satt275—Satt038 0.01 0.00—5.15 2.50 -0.590 8.97
三亚Sanya qγ-A2-1 A2(8) Satt315—Satt632 0.01 0.00—4.78 2.54 -1.235 9.45
qγ-A1-2 A1(5) Satt364—Satt382 22.24 18.35—27.11 2.63 0.621 29.55
2012 原阳Yuanyang qγ-K_2-1 K_2(9) Satt264—Sat_044 37.68 35.40—37.70 3.14 -1.448 12.15
qγ-A1-3 A1(5) Satt382—Satt593 55.77 48.12—56.69 3.18 -0.212 14.20
三亚Sanya qγ-A2-2 A2(8) Satt315—Satt632 2.01 0.67—6.17 2.73 -0.711 14.31
qγ-G-1 G(18) Satt275—Satt038 0.01 0.00—4.73 2.56 -0.535 8.12
qγ-M-1 M(7) Satt220—Satt323 75.57 73.27—75.60 2.73 -0.658 10.04
2015 原阳Yuanyang qγ-C1-1 C1(4) Satt565—Satt578 18.82 18.80—28.97 2.99 0.355 7.29
qγ-A1-1 A1(5) Satt276—Satt364 12.01 8.38—15.03 3.81 0.613 28.23
三亚Sanya qγ-G-1 G(18) Satt275—Satt038 0.01 0.00—7.02 2.60 -0.801 7.91

Fig. 2

Distribution of main QTLs and additive QTLs on linkage groups"

Table 6

Comparison of QTLs detected in this study with other researches"

亲本Parent 性状Traits 文献References
晋豆23×灰布支黑豆Jindou23×Huibuzhi A1(Satt276, Satt364, Satt382), A2(Satt315), C1(Satt565), G(Satt275), K(Satt264), M(Satt220) 本研究This study
Bayfield×合丰25
Bayfield ×Hefeng 25
A2(Sat_383), C1(Satt565), C2(Satt286), G(Satt199), D1b(Satt266), O(Satt576), J(Satt280) [19]
Bayfield×合丰25
Bayfield ×Hefeng 25
A2(Sat_383), C1(Satt565), C2(Satt286), G(Satt199), D1b(Satt266), O(Satt576), E(Satt355), J(Satt280) [20]
Bayfield×Shire C1(Satt646), E(Satt598), I(Satt354), F(Satt334), H(Satt279), K(Satt552) [21]
Bayfield×合丰25
Bayfield ×Hefeng 25
G(Sat_372), D1b(Satt266), L(Satt561, Satt527), M(Satt567) [22]
Essex×ZDD2315 C2(Satt489), D1a(Sat_346), D1b(AI856415), O(Satt633), K(Satt617, Satt260) [23]
[1] RIMBACH G, MOEHRING J, HUEBBE P . Gene-regulatory activity of alpha-tocopherol. Molecules, 2010,15:1746-1761.
doi: 10.3390/molecules15031746
[2] ABBASI A R, HAJIREZAEI M, HOFIUS D, SONNEWALD U, VOLL L M . Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiology, 2007,143:1720-1738.
doi: 10.1104/pp.106.094771
[3] HINCHA D K . Effects of α-tocopherol (Vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Letters, 2008,582:3687-3692.
[4] 吴雪辉, 蓝梧涛, 容欧 . 响应面优化油茶籽油脱臭馏出物中维生素E的提取工艺研究. 中国油脂, 2018,43(5):113-116.
WU X H, LAN W T, RONG O . Optimization of extraction of vitamin E from deodorizer distillate of oil-tea camellia seed oil by response surface methodology. China Oil and Fats, 2018,43(5):113-116. (in Chinese)
[5] 王哲, 毛善俊, 李浩然, 王勇 . 维生素E的催化合成路线分析. 物理化学学报, 2018,34(6):598-617.
WANG Z, MAO S J, LI H R, WANG Y . How to synthesize vitamin E. Acta Physico-Chimica Sinica, 2018,34(6):598-617. (in Chinese)
[6] TAVVA V S, KIM Y H, KAGAN I A, DINKINS R D, KIM K H, COLLINS G B . Increased alpha-tocopherol content in soybean seed overexpressing the perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Reports, 2007,26(1):1-70.
doi: 10.1007/s00299-006-0207-5
[7] KANWISCHER M, PORFIROVA S, BERGMULLER E . Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology, 2005,137:713-723.
[8] 李辉, 罗非君, 林亲录 . γ-生育酚抗癌作用研究进展. 粮食与油脂, 2013,26(3):6-8.
LI H, LUO F J, LIN Q L . Research progress on anticancer of gamma-tocopherol. Cerea1s & Oils, 2013,26(3):6-8. (in Chinese)
[9] 郑景洲, 许友卿, 丁兆坤 . 维生素E的功能、吸收与代谢(1). 生物学通报, 2005,40(11):1-2.
ZHENG J Z, XU Y Q, DING Z K . Function, absorption and metabolism of vitamin E (1). Bulletin of Biology, 2005,40(11):1-2. (in Chinese)
[10] SONTAG T J . Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. novel mechanism of regulation of vitamin E status. Journal of Biological Chemistry, 2002,277:25290-25296.
doi: 10.1074/jbc.M201466200
[11] JIANG Q, RAO X, KIM C Y, FREISER H, ZHANG Q, JIANG Z Y, LI G L . Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. International Journal of Cancer, 2012,130(3):685-693.
[12] HUANG Y, KHOR T O, SHU L M, SAW C L, WU T Y, SUH N, YANG C S, KONG A N T . A γ-tocopherol-rich mixture of tocopherols maintains Nrf 2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. The Journal of Nutrition, 2012,142(5):818-823.
[13] YANG C S, SUH N . Cancer prevention by different forms of tocopherols. Topics in Current Chemistry, 2013,329:21-33.
[14] FENG F, DENG F, ZHOU P, YAN J, WANG Q, YANG R, LI X . QTL mapping for the tocopherols at milk stage of kernel development in sweet corn. Euphytica, 2013,193(3):409-417.
doi: 10.1007/s10681-013-0948-5
[15] GUPTA S, SANGHA M K, KAUR G, BANGA S S, BANGA S S . QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica, 2015,201(3):345-356.
[16] HADDADI P, EBRAHIMI A, LANGLADE N B, YAZDI-SAMADI B, BERGER M, CALMON A . Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Molecular Breeding, 2012,29(3):717-729.
doi: 10.1007/s11032-011-9585-7
[17] GRAEBNER R C, WISE M, CUESTA-MARCOS A, GENIZA M, BLAKE T, BLAKE V C . Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley. PLoS ONE, 2015,10(7):e0133767.
[18] WANG X, ZHANG C, LI L, FRITSCHE S, ENDRIGKEIT J, ZHANG W, LONG Y, JUNG C, MENG J . Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.). PLoS ONE, 2012,7(11):e50038.
[19] LI H, WANG Y, HAN Y, TENG W, ZHAO X, LI Y . Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL× environment effects. Plant Breeding, 2016,135(2):208-214.
doi: 10.1111/pbr.2016.135.issue-2
[20] LI H, LIU H, HAN Y, WU X, TENG W, LIU G . Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theoretical and Applied Genetics, 2010,120(7):1405-1413.
doi: 10.1007/s00122-010-1264-2
[21] SHAW E, RAJCAN I . Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’בOAC Shire’. Plant Breeding. 2017,136:83-93.
doi: 10.1111/pbr.2017.136.issue-1
[22] 李海燕 . 大豆维生素E含量的遗传分析及QTL定位[D]. 哈尔滨: 东北林业大学, 2010.
LI H Y . Genetic and QTL analysis of the content of vitamin E in soybean[D]. Harbin: Northeast Forestry University, 2010. ( in Chinese)
[23] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国 . 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015,41(2):187-196.
doi: 10.3724/SP.J.1006.2015.00187
ZHANG H M, LI H C, WEN Z X, GU H P, YUAN X X, CHEN H T, CUI X Y, CHEN X, LU W G . Identification of QTL associated with vitamin E content in soybean seeds. Acta Agronomica Sinica, 2015,41(2):187-196. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00187
[24] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows 软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
CAO X W, LIU B, ZHANG Y M . SEA: A software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36(6):1-6. (in Chinese)
[25] WANG S C, BASTEN C J, ZENG Z B . Windows QTL cartographer 2.5 user manual. Department of Statistics[J/OL], North Carolina State University, Raleigh, NC, 2005.
[26] 王珍 . 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 南宁: 广西大学, 2004.
WANG Z . Construction of soybean SSR based map and QTL analysis important agronomic traits[D]. Nanning: Guangxi University, 2004. ( in Chinese)
[27] 梁慧珍 . 大豆子粒性状的遗传及QTL分析[D]. 西安: 西北农林科技大学, 2006.
LIANG H Z . Genetic analysis and QTL mapping of seed traits in soybean( Glycine max, 2006. ( in Chinese)
[28] SONG Q J, MAREK L F, SHOEMAKER R C, LARK K G, CONCIBIDO V C, DELANNAY X, PECHT J E, CREGAN P B . A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004,109:122-128.
doi: 10.1007/s00122-004-1602-3
[29] MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T . Report on QTL nomenclature. Rice Genetics Newsletter, 1997,14:11-14.
[30] 王金社, 李海旺, 赵团结, 盖钧镒 . 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010,36(2):191-201.
doi: 10.3724/SP.J.1006.2010.00191
WANG J S, LI H W, ZHAO T J, GAI J Y . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00191
[31] JANSEN R C, VAN OOIJIEN J M, STAM P, DEAN C, JANSEN R C, . Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci Theoretical and Applied Genetics, 1995,91:33-37.
doi: 10.1007/BF00220855
[32] HAGIWARA W E, ONISH K, TAKAMURE I, SANO Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35.
doi: 10.1007/s10681-006-9085-8
[33] CHANG W, DONG L, WANG Z, HU H, HAN Y, TENG W, ZHANG H, GUO M, LI W . QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar ‘L-10’. BMC Genomics, 2011,12:233.
[34] KAZI S, SHULTZ J, AFZAL J, HASHMI R, JASIM M, BOND J, ARELLI P, LIGHTFOOT D . Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’ to three soybean cyst nematode populations. Theoretical and Applied Genetics, 2018,131(4):757-773.
doi: 10.1007/s00122-018-3063-0
[35] 梁慧珍, 余永亮, 杨红旗, 许兰杰, 董薇, 牛永光, 张海洋, 刘学义, 方宣钧 . 大豆异黄酮及其组分含量的遗传分析与QTL检测. 作物学报, 2015,41(9):1372-1383.
doi: 10.3724/SP.J.1006.2015.01372
LIANG H Z, YU Y L, YANG H Q, XU L J, DONG W, NIU Y G, ZHANG H Y, LIU X Y, FANG X J . Genetic analysis and QTL mapping of isoflavone contents and its components in soybean. Acta Agronomica Sinica, 2015,41(9):1372-1383. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01372
[36] PRIOLLI R H G, CAMPOS J B, STABELLINI N S, PINHEIRO J B, VELLO N A . Association mapping of oil content and fatty acid components in soybean. Euphytica, 2015,203(1):83-96.
doi: 10.1007/s10681-014-1264-4
[37] ZHANG D, SONG H N, CHENG H, HAO D R, WANG H, KAN G Z, JIN H X, YU D Y . The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low phosphorus stress. PLoS Genet, 2014,10(1):e1004061.
doi: 10.1371/journal.pgen.1004061
[38] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 李彩云, 杜华, 巩彭涛, 刘学义, 方宣钧 . 大豆产量及主要农艺性状QTL的上位性互作和环境互作分析. 作物学报, 2014,40(1):37-44.
doi: 10.3724/SP.J.1006.2014.00037
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, LI C Y, DU H, GONG P T, LIU X Y, FANG X J . Epistatic effects and QTL × environment interaction effects of QTLs for yield and agronomic traits in soybean. Acta Agronomica Sinica, 2014,40(1):37-44. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00037
[39] CREGAN P B, JARVIK T, BUSH A L, SHOEMAKER R C, LARK K G, KAHLER A L, KAYA N, VANTOAI T T, LOHNES D G, CHUNG J, SPECHT J E . An integrated genetic linkage map of the soybean genome. Crop Science, 1999,39(5):1464-1490.
doi: 10.2135/cropsci1999.3951464x
[40] 梁慧珍, 董薇, 许兰杰, 余永亮, 杨红旗, 谭政委, 许阳, 陈鑫伟 . 不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析. 中国农业科学, 2017,50(18):3450-3460.
doi: 10.3864/j.issn.0578-1752.2017.18.002
LIANG H Z, DONG W, XU L J, YU Y L, YANG H Q, TAN Z W, XU Y, CHEN X W . QTL mapping for main root length and lateral root number in soybean at the seedling stage in different N, P and K environments. Scientia Agricultura Sinica, 2017,50(18):3450-3460. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.18.002
[41] 梁慧珍, 余永亮, 许兰杰, 杨红旗, 董薇, 谭政伟, 李磊, 裴新涌, 刘新梅 . 大豆α-生育酚的遗传与QTL分析. 中国农业科学, 2019,52(1):11-20.
doi: 10.3864/j.issn.0578-1752.2019.01.002
LIANG H Z, YU Y L, XU L J, YANG H Q, DONG W, TAN Z W, LI L, PEI X Y, LIU X M . Inheritance and QTL mapping for α-tocopherol in soybean. Scientia Agricultura Sinica, 2019,52(1):11-20. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.002
[42] 李婕, 王忠, 李永慈, 盖钧镒, 黄中文, 邬荣领 . 异速生长的QTL定位模型及一因多效性扩展. 南京林业大学学报(自然科学版), 2014,38(3):35-39.
LI J, WANG Z, LI Y C, GAI J Y, HUANG Z W, WU R L . A novel QTL mapping model for allometric growth and pleiotropic extension. Journal of Nanjing Forestry University (Natural Science Edition), 2014,38(3):35-39. (in Chinese)
[43] HAGIWARA W E, ONISH K, TAKAMURE I, SANO Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35.
doi: 10.1007/s10681-006-9085-8
[44] ZHANG Z H, YU S B, YU T, HUANG Z, ZHU Y G . Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Research, 2005,91:161-170.
doi: 10.1016/j.fcr.2004.06.004
[45] 方宣钧, 吴为人, 唐纪良 . 作物DNA标记辅助育种. 北京: 科学技术出版社, 2001.
FANG X J, WU W R, TANG J L. Molecular Marker Assistant Breeding in Crop. Beijing: Science and Technology Press, 2001. ( in Chinese)
[46] SONG K, SLOCUM M K, OSBORN T C . Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theoretical and Applied Genetics, 1995,90:1-10.
doi: 10.1007/BF00220989
[47] HOFIUS D, SONNEWALD U . Vitamin E biosynthesis: Biochemistry meets cell biology. Trends in Plant Science, 2003,8(1):6-8.
[48] KOCH M, LEMKE R, HEISE K P, MOCK H P . Characterization of γ-tocopherol methyltransferases from Capsicum annuum L. and Arabidopsis thaliana. European Journal of Biochemistry, 2003,270(1):84-92.
doi: 10.1046/j.1432-1033.2003.03364.x
[49] 涂世伟 . 甘蓝型油菜γ-生育酚甲基转移酶基因(BnVET4)克隆及其遗传转化的研究[D]. 金华: 浙江师范大学, 2006.
TU S W . Manipulation of BnVET4 encoding γ-tocopherol methyltransferases in oilseed rape (Brassica napus L.)[D]. Jinhua: Zhejiang Normal University, 2006. ( in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[7] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[8] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[9] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[10] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[11] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[12] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[13] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[14] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[15] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!