Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 261-270.doi: 10.3864/j.issn.0578-1752.2021.02.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait

LONG WeiHua(),PU HuiMing(),GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song   

  1. Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences/Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Nanjing 210014
  • Received:2020-07-04 Accepted:2020-09-01 Online:2021-01-16 Published:2021-02-03
  • Contact: HuiMing PU E-mail:long-weihua@163.com;puhuiming@126.com

Abstract:

【Objective】 This study is to create the new high oleic (HO) canola germplasm, to explore its genetic mode and the physiological characters of the HO trait, which will lay a foundation for breeding HO canola varieties. 【Method】 The primary mutation population with was obtained by radiation treatment of germinating canola seeds. The new HO germplasm was screened by extreme selection method combined with microspore culture technology in subsequent generations. The genetic populations of six generations (P1, P2, F1, BC1P1, BC1P2 and F2) were constructed by crossing the HO Germplasm with three conventional canola lines with different genetic background. After the fatty acid content of each population was determined, the genetic analysis of high oleic acid content in the genetic population was analyzed by the mixed major-gene plus polygene inheritance model. The oleic acid content in cotyledons during seed germination, vegetative organs at seedling stage in different temperature regimes and seeds during silique ripening process of the HO germplasm were detected to explore their change patterns and physiological effects.【Result】 The primary mutation population with significantly increased oleic acid content was obtained by radiation treatment, and then the high generation population with 20-percent-increased oleic acid content was obtained by using extreme selection method in subsequent generations and the double haploid population was obtained by microspore culture. Finally, a new HO germplasm B161 (C18:1=85%, C18:3=3%) was successfully screened according to the quality traits. Three genetic populations with different genetic background were obtained by crossing B161 as HO parent with three other conventional lines. The correlation analysis of fatty acid contents showed that there was a significant negative correlation between oleic acid content, linoleic acid content and linolenic acid content. The results of genetic analysis showed that the high oleic acid content was controlled by two major genes with additive effect, and their effect values were close. Physiological analysis showed that the contents of oleic acid in vegetative organs (root, stem, leaf and petiole) of HO line were significantly higher than those of the conventional strain, and the linolenic acid contents of HO line were significantly lower than those of the conventional line. The contents of oleic acid in vegetative organs of HO line decreased at low temperature, but they were still higher than those of the conventional line. The linolenic acid contents in vegetative organs of the two lines increased significantly at low temperature, but the linolenic acid content of HO line was still lower than that of the conventional line. During the process of seed ripening and seed germination, the oleic acid content of HO line was significantly higher than that of conventional line, while the linolenic acid content was significantly lower than that of conventional line.【Conclusion】The new HO germplasm was successfully created and the genetic mode and physiological characters were confirmed. This HO germplasm has the potential value in breeding.

Key words: Brassica napus L., radiation mutagenesis, germplasm creation, high oleic trait, genetic analysis, response to low temperature

Table 1

Distribution of C18:1 and C18:3 contents in generations after mutagenesis"

年度
Year
世代
Generation
样本数
No. of sample
C18:1 C18:3
平均值
Mean
变幅
Range (%)
变异系数
CV (%)
平均值
Mean
变幅
Range (%)
变异系数
CV (%)
2004 M1 201 73.44 68.75—78.81 2.19 5.38 3.20—7.91 20.24
2005 M2 578 73.97 56.14—84.90 4.50 6.02 3.52—8.97 32.63
2006 M3 248 75.44 65.50—85.99 5.42 4.30 1.87—8.48 36.91
2007 M4 217 78.76 69.36—87.19 9.69 3.92 1.57—14.02 45.04
2008 M5 208 83.30 70.54—86.95 4.99 3.10 1.98—7.95 38.68
2009 M6 65 81.23 73.51—85.47 2.36 4.00 2.54—6.38 14.20

Table 2

Statistic of fatty acid contents in the six-generation genetic populations from B161×N137"

世代
Generation
籽粒数
No. of seeds
脂肪酸 Fatty acid
C16:0 C18:0 C18:1 C18:2 C18:3 C20:1 C22:1
P1 16 3.10±0.31 2.10±0.32 85.36±0.50 5.03±0.21 2.52±0.11 1.25±0.13 0.20±0.05
P2 17 3.61±0.35 1.59±0.13 64.53±0.72 21.59±0.59 7.94±0.21 1.22±0.14 0.21±0.03
F1(P1×P2) 38 3.28±0.29 1.72±0.22 73.98±1.29 11.66±0.90 4.93±0.42 1.28±0.17 0.19±0.05
F1(P2×P1) 40 3.43±0.31 1.69±0.19 74.14±1.56 11.41±1.30 4.94±0.54 1.31±0.18 0.20±0.04
BC1P1 95 3.36±0.39 1.86±0.20 79.57±4.52 9.30±4.07 3.89±1.01 1.33±0.16 0.29±0.16
BC1P2 98 3.40±0.35 1.53±0.18 70.84±3.61 15.11±3.40 6.90±1.24 1.32±0.11 0.27±0.15
F2 198 3.21±0.43 1.63±0.24 74.95±5.20 12.68±4.48 5.34±1.37 1.38±0.19 0.25±0.20

Table 3

Correlation coefficient among the fatty acid contents in F2 population of B161×N137"

脂肪酸 Fatty acid 棕榈酸C16:0 硬脂酸C18:0 油酸C18:1 亚油酸C18:2 亚麻酸C18:3 二十碳烯酸C20:1 芥酸C22:1
C16:0 1 -0.106 -0.474** 0.409** 0.222** -0.371** 0.029
C18:0 1 0.029 -0.037 -0.143* 0.033 -0.010
C18:1 1 -0.943** -0.541** 0.204** -0.062
C18:2 1 0.303** -0.330** -0.007
C18:3 1 -0.092 -0.005
C20:1 1 0.178*
C22:1 1

Table 4

Candidate genetic models of three populations and their maximum log likelihood values and AIC values"

组合
Combination
C18:1
备选模型
Model
极大似然值
Max-likelihood-value
AIC值
AIC value
B161×N137 2MG-ADI -597.9275 1215.855
2MG-EA -607.3177 1220.635
1MG-A -607.3178 1220.636
B161×N27 2MG-A -586.1464 1180.293
2MG-ADI -582.3989 1184.798
1MG-AD -590.8457 1189.691
B161×N15 2MG-A -576.5989 1161.198
1MG-AD -582.3780 1172.756
2MG-EAD -583.5032 1173.006

Table 5

Estimates of genetic parameters for oleic acid content under the optimal model"

一阶参数
Univalent parameter
估计值 Estimate value
B161×N137 B161×N27 B161×N15
第1对主基因的加性效应da 5.6587 4.7107 4.3096
第2对主基因的加性效应db 4.7263 6.3145 4.2901
第1对主基因的显性效应ha / / /
第2对主基因的显性效应hb / / /

Table 6

The C18:1 and C18:3 contents in tissues between HO and normal lines at seedling stage under different temperatures"

脂肪酸
Fatty acid
材料
Lines
处理
Treat

Root

Stem

Leaf
叶柄
Petiole
C18:1 B161 常温 Normal temperature 47.56±2.77a 37.34±2.37a 29.99±2.21a 55.72±3.08a
低温 Low temperature 38.87±2.33b 23.72±2.28b 14.28±2.74b 20.37±2.42b
N137 常温 Normal temperature 12.67±1.90c 15.90±1.53c 10.48±1.52c 7.16±0.85c
低温 Low temperature 12.34±1.61c 17.25±1.67c 11.69±1.75c 8.61±1.14c
C18:3 B161 常温 Normal temperature 18.89±1.35d 28.17±2.26d 30.55±1.96d 14.41±1.43d
低温 Low temperature 25.56±2.65c 33.31±2.22c 38.37±2.33c 36.92±1.27c
N137 常温 Normal temperature 33.53±3.37b 41.92±2.72b 45.86±2.07b 43.02±2.72b
低温 Low temperature 49.56±3.13a 51.91±3.45a 52.81±1.99a 53.75±2.38a

Fig. 1

Changes of oleic acid and linolenic acid contents in seeds of HO and normal lines after pollination"

Fig. 2

Changes of oleic acid and linolenic acid contents in cotyledons of HO and normal lines after germination"

[1] 胡忆雨, 朱颖璇, 杨雨豪, 邹军, 陈阜, 尹小刚. 1951-2015年中国主要粮食与油料作物种植结构变化分析. 中国农业大学学报, 2019,24(11):183-196.
HU Y Y, ZHU Y X, YANG Y H, ZOU J, CHEN F, YIN X G. Changes of the planting structure of major food and oil crops in China from 1951 to 2015. Journal of China Agriculture University, 2019,24(11):183-196. (in Chinese)
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41(4):485-489.
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019,41(4):485-489. (in Chinese)
[3] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617.
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. (in Chinese)
[4] SCARTH R, MCVETTY P B E. Designer oil canola: A review of food-grade Brassica oils with focus on high oleic, low linolenic types//WRATTEN N, SALISBURY P A (eds). Proceeding of 10th International Rapeseed Congress. Canberra, Australia: GCIRC, 1999: 26-29.
[5] STANISŁAW S, KATARZYNA M, HANNA C, TERESA P, KRYSTYNA K, MARCIN M, JOANNA N, KRZYSZTOF M, IWONA B. Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLoS ONE, 2020,15(6):e0233959.
doi: 10.1371/journal.pone.0233959 pmid: 32497146
[6] REZA F, MOHAMMAD H R. Oxidative stability of canola oil by Biarum bovei bioactive components during storage at ambient temperature. Food Science and Nutrition, 2018,6(2):342-347.
doi: 10.1002/fsn3.560 pmid: 29564101
[7] AULD D L, HEIKKINEN M K, ERICKSON D A, SERNYK J L, ROMERO J E. Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sciences, 1992,32:657-662.
[8] RUCKER B, ROBBELEN G. Development of high oleic acid rapeseed//Proceeding of 9th International Rapeseed Congress. Cambridge, UK: GCIRC, 1995: 389-391.
[9] DEBONTE L R,, FAN Z G, MIAO G H. Fatty acid desaturases and mutant sequences thereof: US 6967243 B2 [P]. 2001-1-29
[10] 和江明, 王敬乔, 陈薇, 李根泽, 董云松, 寸守铣. 用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究. 西南农业学报, 2003,16(2):34-36.
HE J M, WANG J Q, CHEN W, LI G Z, DONG Y S, CUN S X. Studies on rapidly obtaining high oleic acid germplasm of Brassica napus by mutagen EMS and microspore culture. Southwest China Journal of Agricultural Sciences, 2003,16(2):34-36. (in Chinese)
[11] HU X, SULLIVAN GILBERT M, GUPTA M, THOMPSON S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics, 2006,113:497-507.
doi: 10.1007/s00122-006-0315-1 pmid: 16767448
[12] 张宏军, 肖钢, 谭太龙, 李栒, 官春云. EMS处理甘蓝型油菜(Brassica napus)获得高油酸材料. 中国农业科学, 2008,41(12):4016-4022.
ZHANG H J, XIAO G, TAN T L, LI X, GUAN C Y. High oleate material of rapeseed (Brassica napus) produced by EMS treatment. Scientia Agricultura Sinica, 2008,41(12):4016-4022. (in Chinese)
[13] 黄永娟, 张凤启, 杨甜甜, 刘葛山, 蒋守华, 陈健美, 管荣展. EMS 诱变甘蓝型油菜获得高油酸突变体. 分子植物育种, 2011,9(5):611-616.
HUANG Y J, ZHANG F Q, YANG T T, LIU G S, JIANG S H, CHEN J M, GUAN R Z. High oleate mutants of Brassica napus produced by EMS inducement. Molecular Plant Breeding, 2011,9(5):611-616. (in Chinese)
[14] 官春云, 刘春林, 陈社员, 彭琦, 李栒, 官梅. 辐射育种获得油菜(Brassica napus)高油酸材料. 作物学报, 2006,32(11):1625-1629.
GUAN C Y, LIU C L, CHEN S Y, PENG Q, LI X, GUAN M. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding. Acta Agronomica Sinica, 2006,32(11):1625-1629. (in Chinese)
[15] 刘列钊, 王欣娜, 阎行颖, 王瑞, 徐新福, 卢坤, 李加纳. 航天诱变高油酸甘蓝型油菜突变体分子标记的筛选. 中国农业科学, 2012,45(23):4931-4938.
LIU L Z, WANG X N, YAN X Y, WANG R, XU X F, LU K, LI J N. Molecular marker screen for high oleic acid in space flight mutant Brassica napus. Scientia Agricultura Sinica, 2012,45(23):4931-4938. (in Chinese)
[16] STOUTJESDIJK P A, HURLESTONE C, SINGH S P, GREEN A G. High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous D12-desaturases. Biochemical Society Transactions, 2000,28:938-940.
pmid: 11171263
[17] 陈苇, 李劲峰, 董云松, 李根泽, 寸守铣, 王敬乔. 甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得. 植物生理与分子生物学学报, 2006,32(6):665-671.
pmid: 17167203
CHEN W, LI J F, DONG Y S, LI G Z, CUN S X, WANG J Q. Obtaining new germplasm of Brassica napus with high oleic acid content by RNA interference and marker-free transformation of Fad2 gene. Journal of Plant Physiology and Molecular Biology, 2006,32(6):665-671. (in Chinese)
pmid: 17167203
[18] 田保明, 廉玉利, 凌华, 杨光圣, 赵珍, 范兴福, 李旭娇, 师恭曜. RNAi干扰油菜Δ12脂肪酸脱饱和酶基因的表达效果. 中国油料作物学报, 2009,31(2):132-136.
TIAN B M, LIAN Y L, LING H, YANG G S, FAN S F, LI X J, SHI G Y. Introduction of FAD2 gene fragment into Brassica napus via RNAi plasmid and enhanced oleic acid composition. Chinese Journal of Oil Crop Sciences, 2009,31(2):132-136. (in Chinese)
[19] 陈松, 浦惠明, 张杰夫, 高建芹, 陈锋, 龙卫华, 胡茂龙, 戚存扣. 转基因高油酸甘蓝型油菜新种质的获得. 江苏农业学报, 2009,25(6):1234-1237.
CHEN S, PU H M, ZHANG J F, GAO J Q, CHEN F, LONG W H, HU M L, QI C K. Identification of high oleic acid germplasm from the T2 progency of the transgenic Brassica napus L. Jiangsu Journal of Agriculture Sciences, 2009,25(6):1234-1237. (in Chinese)
[20] PENG Q, HU Y, WEI R, ZHANG Y, GUAN C, RUAN Y. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Report, 2010,29:317-325.
[21] SCHIERHOLT A, BECKER H C. Environmental variability and heritability of high oleic acid content in winter oilseed rape. Plant Breeding, 2001,120:63-66.
[22] 费维新, 吴新杰, 李强生, 陈凤祥, 侯树敏, 范志雄, 江莹芬, 雷伟侠, 荣松柏, 段晓莉, 胡宝成. 甘蓝型油菜高油酸材料的遗传分析. 中国农学通报, 2012,28(1):176-180.
FEI W X, WU X J, LI Q S, CHEN F X, HOU S M, FAN Z X, JIANG Y F, LEI W X, RONG S B, DUAN X L. Genetic analysis of high oleic acid mutation materials in Brassica napus. Chinese Agricultural Science Bulletin, 2012,28(01):176-180. (in Chinese)
[23] YANG Q, FAN C, GUO Z, QIN J, WU J, LI Q. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 2012,125:715-729.
doi: 10.1007/s00122-012-1863-1 pmid: 22534790
[24] LONG W, HU M, GAO J, CHEN S, ZHANG J, CHENG L, PU H. Identification and functional analysis of two new mutant BnFAD2 Alleles that confer elevated oleic acid content in rapeseed. Frontiers in Genetics, 2018,9:399.
doi: 10.3389/fgene.2018.00399 pmid: 30294343
[25] 傅寿仲, 吕忠进, 戚存扣, 陈爱华. 甘蓝型油菜十八碳烯酸的进一步改良. 江苏农业学报, 1995,11(1):16-20.
FOU S Z, LÜ Z J, QI C K, CHEN A H. Further modification of levels of C18 unsaturated fatty acids in rapeseed. Jiangsu Journal of Agriculture Sciences, 1995,11(1):16-20. (in Chinese)
[26] 徐华军, 贺源辉, 陈秀芳. 60Co射线对双低甘蓝型油菜(Brassica napus L.)的辐射效应. 核农学报, 1992,6(4):199-206.
XU H J, HE Y H, CHEN X F. The effects of gamma irradiation on morphological cytological and biochemical characters of double-low rape (Brassica napus L.). Acta Agriculturae Nucleatae Sinica, 1992,6(4):199-206. (in Chinese)
[27] 高建芹, 浦惠明, 戚存扣, 张洁夫, 陈新军, 龙卫华, 傅寿仲. 应用气相色谱仪分析油菜脂肪酸含量. 江苏农业学报, 2008(5):581-585.
GAO J Q, PU H M, QI C K, ZHANG J F, CHEN X J, LONG W H, FU S Z. Analysis of fatty acid content in rapeseed by gas chromatography. Jiangsu Journal of Agriculture Sciences, 2008(5):581-585. (in Chinese)
[28] ZHANG Y M. Segregation Analysis of Quantitative Traits and Its R Software. Beau Bassin, Mauritius: Golden Light Academic Press, 2017.
[29] WELLS R, TRICK M, SOUMPOUROU E, CLISSOLD L, MORGAN C, WERNER P. The control of seed oil polyunsaturated content in the polypoid crop species Brassica napus. Molecular Breeding, 2014,33:349-362.
doi: 10.1007/s11032-013-9954-5 pmid: 24489479
[30] 曾新华. 不同诱变方法对油菜种子诱变效果及突变体的研究[D]. 武汉:华中农业大学, 2010.
ZENG X H. Comparing effectiveness of different mutagens for seed quality and analysis of mutants in Brassica napus[D]. Wuhan: Huazhong Agriculture University, 2010. (in Chinese)
[31] ZHANG H Z, SHI C H, WU J G, REN Y L, LI C T, ZHANG D Q, ZHANG Y F. Analysis of genetic and genotype × environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L. Plant Science, 2004,167(1):43-48.
[32] ZHAO Q, WU J, CAI G, YANG Q, SHAHID M, FAN C, ZHANG C, ZHOU Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnology Journal, 2019,17(12):2313-2324.
pmid: 31037811
[33] LI Q, ZHENG Q, SHEN W Y, CRAM D, FOWLER D B, WEI Y D, ZOU J T. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. The Plant Cell, 2015(27):86-103.
[34] HOU Q C, UFER G, BARTELS D. Lipid signaling in plant responses to abiotic stress. Plant, Cell and Environment, 2016,39:1029-1048.
[35] STACY D S, ZOU J T, RANDALL J W. Abiotic factors influence plant storage lipid accumulation and composition. Plant Science, 2016,243:1-9.
doi: 10.1016/j.plantsci.2015.11.003 pmid: 26795146
[36] KONG Q, YANG Y Z, GUO L, YUAN L, MA W. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor. Frontiers in Plant Sciences, 2020,11:24.
[37] DAR A A, CHOUDHURY A R, KANCHARLA P K, ARUMUGAM N. The FAD2 gene in plants: Occurrence, regulation and role. Frontiers in Plant Sciences, 2017,8:1789.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[7] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[8] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[9] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[10] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[11] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[12] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[13] ZHAO QianRu, ZHONG XingHua, ZHANG Fei, FANG WeiMin, CHEN FaDi, TENG NianJun. Heterosis and Mixed Genetic Analysis of Green-Center Trait of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(5): 964-976.
[14] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[15] ZHANG XiaoBo, XIE Jia, ZHANG XiaoQiong, TIAN WeiJiang, HE PeiLong, LIU SiCen, HE GuangHua, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Dwarf and Curled Flag Leaf Mutant dcfl1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1551-1558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!