Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (12): 2346-2356.doi: 10.3864/j.issn.0578-1752.2012.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Epistatic Effects and QE Interaction Effects of QTLs for Two-Seed Pod Length and Width in Soybean

 YANG  Zhen, PEI  Yu-Feng, XIE  Sheng-Nan, LIU  Chun-Yan, JIANG  Hong-Wei, HAN  Xue, XIN  Da-Wei, CHEN  Qing-Shan, HU  Guo-Hua   

  1. 1.东北农业大学农学院,哈尔滨 150030
    2.黑龙江省农垦科研育种中心,哈尔滨 150090
    3.国家大豆工程技术研究中心,哈尔滨 150050
  • Received:2011-12-19 Online:2012-06-15 Published:2012-03-19

Abstract: 【Objective】The objective of this study was to investigate the epistatic effects and QE interaction effects of QTLs for two-seed pod length and two-seed pod width.【Method】In order to find out these results, a F2:14-F2:18 RIL population containing 147 lines derived from a cross between Charleston as female parent and Dongnong594 as male parent were used in this experiment. A genetic linkage map was constructed with 164 SSR primers screened in two parents and amplified in 147 lines population. QTLs and epistatic effects and QE Interaction effects of QTLs were located on one site in five years with a mixed linear model (QTLmapper1.6) . QTLs for these were detected in a five-year experiment with the recombination inbred lines (RIL) population derived from a cross between Charleston and Dongnong 594. 【Result】Eight two-seed pod length QTLs and six two-seed pod width with additive effects were detected, the additive effects contribution rate were 27.2% and 16.27%, respectively, the general contribution of interaction between QTLs and environment were 10.19% and 12.18%. Nine pairs of two-seed pod length QTLs with epistatic effects were found in the RIL, accounting for 9.02% of the general phenotypic variation, and eight pairs of two-seed pod width QTLs accounting for 8.81% of the general phenotypic variation.【Conclusion】The results indicated that the epistatic effects and the environmental factor played an important role in the inheritance of two seed-pod length and width in soybean. Therefore, both major and minor QTLs should be considered in the improvement in soybean breeding.

Key words: soybean, two-seed pod length, two-seed pod width, mixed linear model, QTL ×, environment interaction, epistatic effects

[1]Joanna F, Egli D B, Leggett J E. Pod and seed development in soybean cultivars with differences in seed size. Agronomy Journal, 1981, 74(1): 81-85.

[2]Basavaraja G T, Naidu G K, Salimath P M. Evaluation of vegetable soybean genotypes for yield and component traits. Karnataka Journal Agriculture Sicence, 2005, 18(1): 27-31.

[3]Muhammad A, Naazar A, Abdul G. Character correlation and path coefficient in soybean Glycine max(L.) Merrill. Pakistan Journal of Botany, 2006, 38(1): 121-130.

[4]武天龙, 赵则胜, 蒋家云, 蔡向忠, 汤  楠, 赵晓东. 菜用大豆粒荚性状遗传变异及相关性的研究. 上海农学院学报, 1999, 17(2): 79-84.

Wu T L, Zhao Z S, Jiang J Y, Cai X Z, Tang N, Zhao X D. Study on genetic variation of seed pod characters in vegetable soybean and their correlation. Journal of Shanghai Agricultural College, 1999, 17(2): 79-84. (in Chinese)

[5]Zwart R S, Thompson J P, Milgate A W, Bansal U K, Williamson P M, Raman H, Bariana H S. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Molecular Breeding, 2010, 26: 107-124.

[6]Zhang Y S, Jiang L, Liu X, Liu S, Chen L, Zhai H, Wan J. Heading date QTL in rice derived from an analysis of chromosome segment substitution lines. Plant Breeding, 2011, 130(2): 185-191.

[7]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics, 2004, 109: 552-561.

[8]王  珍. 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 广西: 广西大学, 2004.

Wang Z. Construction of soybean SSR based map and QTL analysis important agronomic traits[D]. Guangxi: Guangxi University, 2004. (in Chinese)

[9]李灿东, 蒋洪蔚, 张闻博, 邱鹏程, 刘春燕, 李文福, 高运来, 陈庆山, 胡国华. 大豆荚粒相关性状的QTL分析. 分子植物育种, 2008, 6(6): 1091-1100.

Li C D, Jiang H W, Zhang W B, Qiu P C, Liu C Y, Li W F, Gao Y L, Chen Q S, Hu G H. QTL analysis of seed and traits in soybean. Molecular Plant Breeding, 2008, 6(6): 1091-1100. (in Chinese)

[10]杨  振, 沈岩茹, 韩冬伟, 刘春燕, 蒋洪蔚, 陈庆山, 胡国华. 大豆二粒荚库容含量的多年QTL分析. 中国农业科学, 2011, 44(22): 4560-4569.

Yang Z, Shen Y R, Han D W, Liu C Y, Jiang H W, Chen Q S, Hu G H. QTL analysis of two-seed pod storage capacity in soybean in different years. Scientia Agricultura Sinica, 2011, 44(22): 4560-4569. (in Chinese)

[11]Phillips P C. The language of gene interaction. Genetics,1998, 149: 1167-1171.

[12]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: Ⅰ. Comparison of three related recombinant inbred populations. Crop Science, 1999, 39: 1642-1651.

[13]Specht J E, Chase K, Macrander M, Graef B L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Science, 2001, 41: 493-509.

[14]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143: 1807-1817.

[15]朱  军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20(6): 551-559.

Zhu J. General genetic models and new analysis methods for quantitative traits. Journal of Zhejiang Agricultural University, 1994, 20(6): 551-559. (in Chinese)

[16]Veronica C, Pablo F R, Valeria B, Gerardo L. Cervigni, Ruben M, Carlos A J, Viviana C E. Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. Journal of Applied Genetics, 2011, 52: 287-298.

[17]赵芳明, 张桂泉, 曾瑞珍, 杨正林, 凌英华, 桑贤春, 何光华. 基于单片段代换系的水稻粒型QTL加性及上位性效应分析. 作物学报, 2011, 37(3): 469-476.

Zhao F M, Zhang G Q, Zeng R Z, Yang Z L, Ling Y H, Sang X C, He G H. Analysis of epistatic and additive effects of QTLs for grain shape using single segment substitution lines in rice (Oryza sativa L.). Acta Agronomica Sinica, 2011, 37(3): 469-476. (in Chinese)

[18]Xinhua Z, Yang Q, Jae Keun S. Identification of main effects, epistatic effects and their environmental interactions of QTLs for yield traits in rice. Genes and Genomics, 2010, 32: 37-45.

[19]Zhao L. Detection of QTLs with additive effects, epistatic effects, and QTL×environment interactions for zeleny sedimentation value using a doubled haploid population in cultivated wheat. Agricultural Sciences in China, 2009, 8(9): 1039-1045.

[20]Yingpeng H, Dongwei X, Weili T, Shuzheng Z, Wei C, Wenbin L. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theoretical and Applied Genetics, 2011, 122: 1481-1488.

[21]Wang D L, Zhu J, Li Z K, Paterson A H. QTLMaper1.6. (2004-12)[2005-2]. http://ibi.zju.edu.cn/software/qtlmapper/index.htm

[22]陈庆山, 刘春燕, 吕  东, 何建勋. 大豆DNA提取基本原理的探讨. 东北农业大学学报, 2004, 35: 129-134.

Chen Q S, Liu C Y, Lü D, He J X. The basic principle of DNA extraction from soybean. Journal of Northeast Agricultural University, 2004, 35: 129-134. (in Chinese)

[23]陈庆山, 张忠臣, 刘春燕, 王伟权, 李文滨. 应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱. 中国农业科学, 2005, 38(7): 1312-1316.

Chen Q S, Zhang Z C, Liu C Y, Wang W Q, Li W B. Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. Scientia Agricultura Sinica, 2005, 38(7): 1312-1316. (in Chinese)

[24]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletters, 1997, 14: 11-13.

[25]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics, 1991, 127: 181-197.

[26]谭巍巍, 王  阳, 李永祥, 刘  成, 刘志斋, 彭  勃, 王  迪, 张  岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎  裕. 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011, 44(2): 233-244.

Tan W W, Wang Y, Li Y X, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL analysis of ear traits in maize across multiple environments. Scientia Agricultura Sinica, 2011, 44(2): 233-244. (in Chinese)

[27]张焦平, 江良荣, 黄建勋, 张  凯, 王侯聪, 黄育民. 水稻抽穗期上位效应和QE互作效应的分析. 分子植物育种, 2006, 4(3): 351-357.

Zhang J P, Jiang L R, Huang J X, Zhang K, Wang H C, Huang Y M. Analysis of epistatic and QE interaction effects of QTL controlling heading date in rice. Molecular Plant Breeding, 2006, 4(3): 351-357. (in Chinese)

[28]单大鹏, 朱荣胜, 陈立君, 齐照明, 刘春燕, 胡国华, 陈庆山. 大豆蛋白质含量相关QTL间的上位效应和QE互作效应. 作物学报, 2009, 35(1): 41-47.

Shan D P, Zhu R S, Chen L J, Qi Z M, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agronomica Sinica, 2009, 35(1): 41-47. (in Chinese)

[29]单大鹏, 齐照明, 邱红梅, 单彩云, 刘春燕, 胡国华, 陈庆山. 大豆油分含量相关的QTL间的上位效应和QE互作效应. 作物学报, 2008, 34(6): 952-957.

Shan D P, Qi Z M, Qiu H M, Shan C Y, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs on oil content in soybean. Acta Agronomica Sinica, 2008, 34(6): 952-957. (in Chinese)

[30]Paterson A H, Damon S, Hewitt J D. Mendelian factors underlying underlying quantitative traits in tomato: Comparison across species, generations and environments. Genetics, 1991, 127: 181-197.

[31]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S. QTL × environment interactions in rice: I. Heading date and plant height. Theoretical and Applied Genetics, 2003, 108: 141-153.

[32]王贤智. 大豆产量相关性状的遗传与稳定性分析及QTL定位研究[D]. 北京: 中国农业科学院, 2008.

Wang X Z. Inheritance, stable analysis and QTL mapping of yield related traits in soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[33]袁爱平, 曹立勇, 庄杰云, 李润植, 郑康乐, 朱  军, 程式华. 水稻株高、抽穗期和有效穗数的QTL与环境的互作分析. 遗传学报, 2003, 30(10): 899-906.

Yuan A P, Cao L Y, Zhuang J Y, Li R Z, Zheng K L, Zhu J, Cheng S H. Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice. Acta Genetica Sinica, 2003, 30(10): 899-906. (in Chinese)

[34]Lu C F, Shen L S, Tan Z B, Xu Y B, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theoretical and Applied Genetics, 1997, 94: 145-150.

[35]Jansen R C, Ooijen J W, Stam P, Lister C, Dean C. Genotype-by- environment interaction in genetic mapping of multiple quantitative trait loci. Theoretical and Applied Genetics, 1995, 91: 33-37.

[36]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theoretical And Applied Genetics, 2001, 103: 104-111.

[37]江良荣, 王  伟, 黄建勋, 黄荣裕, 郑景生, 黄育民, 王侯聪. 水稻粒形性状的上位性和QE互作效应分析. 分子植物育种, 2009, 7(4): 690-698.

Jiang L R, Wang W, Huang J X, Huang R Y, Zheng J S, Huang Y M, Wang H C. Analysis of epistatic and QE interaction effects of QTL for grain shape in rice. Molecular Plant Breeding, 2009, 7(4): 690-698. (in Chinese)

[38]Chase K, Adler F R, Lark K G. Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theoretical and Applied Genetics, 94: 724-730.

[39]Kulwal P, Kumar N, Kumar A, Gupta R, Balyan H, Gupta P. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics, 2005, 5: 254-259.

[40]张文英, 程君奇, 朱  军, 吴为人. 上位性及其在遗传育种研究中的应用. 生物信息学, 2004, 2: 39-42.

Zhang W Y, Cheng J Q, Zhu J, Wu W R. Epistasis and its  application in genetics and breeding. Bioinformatics, 2004, 2: 39-42. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!