Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (10): 1895-1903.doi: 10.3864/j.issn.0578-1752.2012.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Population Structure and Association Analysis of Oil Content in a Diverse Set of Chinese Sesame (Sesamum indicum L.) Germplasm

 WEI  Wen-Liang, ZHANG  Yan-Xin, 吕Hai-Xia , WANG  Lin-Hai, LI  Dong-Hua, ZHANG  Xiu-Rong   

  1. 中国农业科学院油料作物研究所/农业部油料作物生物学与遗传育种重点实验室,武汉 430062
  • Received:2011-12-06 Online:2012-05-15 Published:2012-03-06

Abstract: 【Objective】 Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. In this study, we estimated the genetic diversity and population structure in a nature population of Chinese sesame accessions, which would be of great importance for effective utilization of these germplasms for sesame improvement and association mapping of target traits in sesame. 【Method】 Totally 79 polymorphic SSR, SRAP, and AFLP primer combinations were used in amplification of 216 sesame accessions from Chinese sesame core collections. Analysis of genetic diversity, population structure, and trait association was conducted.【Result】 A total of 338 polymorphic bands were generated. The genetic diversity and polymorphic information content (PIC) of nature population are 0.2493 and 0.2090, respectively. The nature population of 216 accessions was divided into two distinguishable subpopulations, named POP1 and POP2, by population structure analysis. There were 174 accessions, 80.56% in proportion, assigned into POP1 and 42 ones, 19.44% in proportion, into POP2. The genetic diversity (0.2180) and PIC (0.1840) of POP1 were lower than those of POP2, 0.3190 and 0.2561, respectively. AMOVA unraveled that substantially more genetic variation within subpopulations (86.83%) was observed than between subpopulations (13.17%) at P<0.001 level. Trait association analysis showed eight markers could be detected in two years repeatedly at highly significant level (P<0.01) with total explanation of variation of 0.2846 in Year 2008 and 0.3801 in Year 2009, which indicated these markers might be stably and affirmatively associated with QTLs controlling oil content in sesame. 【Conclusion】 An abundant genetic variation but week population structure was detected in 216 Chinese sesame accessions which indicated the nature population to be representative for further association analysis of quantitative traits in sesame. Population structure analysis showed that the nature population could be divided into two subpopulations and AMOVA revealed that the genetic variation within subpopulations was substantially more than that between subpopulations (P<0.001). Association analysis indicated that eight markers might be associated with oil content for they could be detected associated stably with oil content at significant level (P<0.01) in Year 2008 and 2009, repeatedly. The results suggested that the population is useful for the marker–trait association mapping. This new association population has a potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting diversity present in sesame germplasms.

Key words: sesame (Sesamum indicum L.), genetic diversity, population structure, oil content, association analysis

[1] 杨绍华. 植物QTL研究进展. 中国农学通报, 2011, 27(3): 226-231.

Yang S H. Development of plant QTL analysis. Chinese Agricultural Science Bulletin, 2011, 27(3): 226-231. (in Chinese)

[2] 金  亮, 包劲松. 植物性状-标记关联分析研究进展. 分子植物育种, 2009, 7(6): 1048-1063.

Jin L, Bao J S. Progress on the trait-marker association analysis in plants. Molecular Plant Breeding, 2009, 7(6): 1048-1063. (in Chinese)

[3] Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-63.

[4] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展, 作物学报, 2007, 33(4): 523-530.

Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agronomica Sinica, 2007, 33(4): 523-530. (in Chinese)

[5] Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54: 357-374.

[6] Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Current Opinion Biotechnology, 2006, 17: 155-160.

[7] Meuwissen T H E, Goddard M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 2000, 155: 421-430.

[8] Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell, 2003, 15: 1795-1806.

[9] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28: 286-289.

[10] Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene associations. The Plant Cell, 2004, 16: 2719-2733.

[11] Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J, Buckler E S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319: 330-333.

[12] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.

[13] Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V, Rousset M. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theoretical and Applied Genetics, 2012, 124(3): 597-611.

[14] Olsen K M, Halldorsdottir S S, Stinchcombe J R, Weinig C, Schmitt J, Purugganan M D. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics, 2004, 167: 1361-1369.

[15] Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics, 2005, 1: e60.

[16] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Molecular Breeding, 2007, 19: 341-356.

[17] Zeven A, Zhukovsky P. Dictionary of cultivated plants and their centers of diversity. Wageningen, PUDOC; 1975.

[18] Zhang X R, Zhao Y Z, Cheng Y, Feng X Y, Guo Q Y, Zhou M D, Hodgkin T. Establishment of sesame germplasm core collection in China. Genetic Resources and Crop Evolution, 2000, 47: 273-279.

[19] Zhang Y X, Zhang X Y, Hua W, Wang L H, Che Z. Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes and Genomics, 2010, 32: 207-215.

[20] Khanuja S P, Shasany A K, Darokar M P, Kumar S. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter, 1999, 17: 1-7.

[21] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP) a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461.

[22] Dixit A, Jin M H, Chung J W, Yu J W, Chung H K, Ma K H, Park Y J, Cho E G. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Molecular Ecology Notes, 2005, 5: 736-738.

[23] Wei W L, Qi X Q, Wang L H, Zhang Y X, Hua W, Li D H, Lv H X, Zhang X R. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics, 2011, 12: 451-463.

[24] Hernan E L, Petr K. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics, 2006, 7: 1-10.

[25] Liu K, Muse S V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21: 2128-2129.

[26] Pritchard J K, Wen W. Documentation for STRUCTURE Software: Version 2.3. Chicago: The University of Chicago Press, 2003.

[27] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14: 2611-2620.

[28] Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 2005, 1: 47-50.

[29] Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38: 203-208.

[30] Malosetti M, van der Linden C G, Vosman B, van Eeuwijk F A. A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics, 2007, 175: 879-889.

[31] Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theoretical and Applied Genetics, 2004, 109(4): 681-689.

[32] Wang M L, Zhu C S, Barkley N A, Chen Z B, Erpelding J E, Murray S C, Tuinstra M R, Tess T O, Pederson G A, Yu J M. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics, 2009, 120: 13-23.

[33] Wen W W, Mei H W , Feng F J, Yu S B, Huang Z C, Wu J H, Chen  L, Xu X Y, Luo L J. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2009, 119: 459-470.

[34] Li X B, YanW G, Agrama H, Jia L M, Shen X H, Jackson A, Moldenhauer K, Yeater K, McClun A G, Wu D X. Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta, 2011, 234(2): 347-361.

[35] Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J S. Genetic diversity  and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 2010, 121: 475-487.

[36] Li Y H, Smulders M J M, Chang R Z, Qiu L J. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conservation Genetics, 2011, 12: 1145-1157.

[37] Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical and Applied Genetics, 2008, 116: 777-787.

[38] Zhang J A, Hao C Y, Ren Q, Chang X P, Liu G R, Jing R L. Association mapping of dynamic developmental plant height in common wheat. Planta, 2011, 234(5): 891-902.

[39] Zhao W, Park E J, Chung J W, Park Y J, Chung I M, Ahn J K, Kim G H. Association analysis of the amino acid contents in rice. Journal of Integrative Plant Biology, 2009, 51(12): 1126-1137.

[40] Shi C, Navabi A, Yu K F. Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biology, 2011, 11: 52-62.

[41] Shao Y F, Jin L, Zhang G, Lu Y, Shen Y, Bao J S. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theoretical and Applied Genetics, 2011, 122: 1005-1016.

[42] Jestin C, Lode M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M J, Delourme R. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Molecular Breeding, 2011, 27: 271-287.

[43] 王荣焕, 王天宇, 黎  裕. 关联分析在作物种质资源分子评价中的应用. 植物遗传资源学报, 2007, 8(3): 366-372.

Wang R H, Wang T Y, Li Y. Application of association analysis in molecular evaluation of crop germplasm resources. Journal of Plant Genetic Resources, 2007, 8(3): 366-372. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[13] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[14] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[15] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!