Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1303-1317.doi: 10.3864/j.issn.0578-1752.2012.07.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Isolation and Phylogeny of Nitrogen-Fixing Endophytic Bacteria in Wheat, Rice, Maize, Chinese Cabbage and Celery

 SUN  Jian-Guang, LUO  Qiong, GAO  Miao, HU  Hai-Yan, XU  Jing, ZHOU  Yi-Qing   

  1. 中国农业科学院农业资源与农业区划研究所/农业部作物营养与施肥重点实验室,北京 100081
  • Received:2011-04-12 Online:2012-04-01 Published:2011-08-26

Abstract: 【Objective】 The objective of this study is to determine the main groups and phylogenetic position of nitrogen-fixing endophytic bacteria in wheat, rice, maize, Chinese cabbage and celery. 【Method】 Surface sterilization and nitrogen-free medium were used to isolate nitrogen-fixing endophytic bacteria. Acetylene reduction assay was used to measure the nitrogenase activity. 16S rDNA was amplified by PCR and 16S rDNA sequence was analysed with MEGA software. 【Result】 Thirty four nitrogen-fixing endophytic bacteria with nitrogenase activity ranging from 0.30 to 30.24 nmol C2H4/h•mg protein were isolated from field wheat. Based on 16S rDNA sequence similarity, these strains belonged to 21 species of 13 genera, including Pseudomonas, Rhizobium, Bacillus, Flavobacterium, etc. Twenty five nitrogen-fixing endophytic bacteria with nitrogenase activity ranging from 3.12 to 254.12 nmol C2H4/h•mg protein were isolated from field rice. They belonged to 16 species of 9 genera, including Bacillus, Burkholderia, Enterobacter, Klebsiella, etc. Moreover, Burkholderia, Enterobacter and Klebsiella were dominent. Nine maize endophytic diazotrophs with nitrogenase activity ranging from 7.27 to 59.58 nmol C2H4/h•mg protein were identified as 6 species of genera Rhizobium, Sphingomonas, Arthrobacter, Brevibacterium and Microbacterium. Fourteen endophytic diazotrophs with nitrogenase activity ranging from 2.33 to 205.21 nmol C2H4/h•mg protein were isolated from pot trial pakchoi and identified as 8 species of 6 genera of Rhizobium, Arthrobacter, Pseudomonas, etc. Ten endophytic diazotrophs with nitrogenase activity ranging from 1.23 to 46.70 nmol C2H4/h•mg protein were isolated from marcket celery and identified as 8 species of 5 genera of Sphingomonas, Pseudomonas, Brevundimonas, etc. 【Conclusion】 Nitrogen-fixing endophytic bacteria colonized widely in wheat, rice, maize and vegetables. Their nitrogenase activity under pure culture ranged from 0.30 to 254.12 nmol C2H4/h•mg protein. Ninety two endophytic diazotrophs belonged to 56 species of 25 genera, including Pseudomonas, Rhizobium, Bacillus, Burkholderia, Sphingomonas, Enterobacter and Klebsiella, etc. These endophytic diazotrophs have a great potential to agriculture.

Key words: wheat, rice, maize, Chinese cabbage, celery, endophytic diazotrophs, phylogeny

[1]Barraquio W, Revilla L, Ladha J K. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant and Soil, 1997, 194: 15-24.

[2]Zhang G X, Peng G X, Wang E T, Yan H, Yuan Q H, Zhang W, Lou X, Wu H, Tan Z Y. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov.. Archieve Microbiology, 2008, 189: 431-439.

[3]Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. International Journal of Systematic and Evolutionary Microbiology, 2009, 59: 1650-1655.

[4]Sandhiya G S, Sugitha T C, Balachandar D, Kumar K. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian Journal of Experimental Biology, 2005, 43(9): 802-807.

[5]Govindarajan M, Balandreau J, Kwon S W, Weon H Y, Lakshminarasimhan C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 2008, 55(1): 21-37.

[6]Baldani V L D, Baldani J I, Döbereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp.. Biology and Fertility Soils, 2000, 30: 485-491.

[7]Rodrigues E P, Rodrigues L S, de Oliveira A L M, Baldani V L D, dos Santos Teixeira K R, Urquiaga S, Reis V M. Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil, 2008, 302: 249-261.

[8]Estrada-De los Santos P, Bustillos-Cristales R, Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology, 2001, 67(6): 2790-2798.

[9]Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Canidian Journal of Microbiology, 2002, 48(4): 285-294.

[10]Boddey R M, Urquiaga S, Alves B J R, Reis V. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant and Soil, 2003, 252: 139-149.

[11]Govindarajan M, Kwon S W, Weon H Y. Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World Journal of Microbiology and Biotechnology, 2007, 23: 997-1006.

[12]dos Reis Junior F B, Reis V M, Urquiaga S, Döbereiner J. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant and Soil, 2000, 219: 153-159.

[13]Oliveira A L M, Urquiaga S, Döbereiner J, Baldani J I. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant and Soil, 2002, 242: 205-215.

[14]Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant and Soil, 2006, 280: 239-252.

[15]李倍金, 罗  明, 周  俊, 孔德江, 张铁明. 几种禾草内生固氮菌的分离及固氮活性测定. 草业学报, 2008, 17(5): 37-42. 

Li B J, Luo M, Zhou J, Kong D J, Zhang T M. Isolation of endophytic diazotrophic bacteria from several gramineae grasses and determination of their nitrogenase activity. Acta Prataculturae Sinica, 2008, 17(5): 37-42. (in Chinese)

[16]Tan Z Y, Peng G X, Xu P Z, Ai S Y, Tang S H, Zhang G X, Zeng F Y. Diversity and high nitrogenase activity of endophytic diazotrophs isolated from Oryza rufipogon Griff.. Chinese Science Bulletin, 2009, 54: 2839-2848.

[17]孙建光, 张燕春, 徐  晶, 胡海燕. 高效固氮芽孢杆菌选育及其生物学特性研究. 中国农业科学, 2009, 42(6): 2043-2051.

Sun J G, Zhang Y C, Xu J, Hu H Y. Isolation and biological characteristic investigation on efficient nitrogen-fixing bacilli. Scientia Agricultura Sinica, 2009, 42(6): 2043-2051. (in Chinese)

[18]孙建光, 徐  晶, 胡海燕, 张燕春, 刘  君, 王文博, 孙燕华. 中国十三省市土壤中非共生固氮微生物菌种资源研究. 植物营养与肥料学报, 2009, 15(6): 1450-1465.

Sun J G, Xu J, Hu H Y, Zhang Y C, Liu J, Wang W B, Sun Y H. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1450-1465. (in Chinese)

[19]Franche C, Linderstrom K, Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil, 2009, 321: 35-59.

[20]Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum K U, Park K D, Son C Y, Sa T, Caballero-Melladoe J. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic and Applied Microbiology, 2005, 28: 277-286.

[21]Jha B, Thakura M C, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European Journal of Soil Biology, 2009, 45: 62-72.

[22]Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 2009, 42: 141-149.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[10] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[11] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[12] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[13] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!